Методика определения выбросов автотранспорта для проведения сводных расчетов загрязнения атмосферы городов. Выбросы от автотранспорта предприятия Выбросы в атмосферный воздух от автотранспорта

Промышленно-экономическое развитие сопровождается, как правило, ростом загрязнения окружающей среды. Большинство крупных городов характеризуются значительной концентрацией промышленных объектов на относительно незначительных территориях, что представляет опасность для здоровья людей.

Одним из экологических факторов, оказывающих наиболее выраженное влияние на здоровье человека, является качество воздуха. Особую опасность в настоящее время представляют выбросы в атмосферу загрязняющих веществ. Это обусловлено тем, что токсиканты поступают в человеческий организм в основном через дыхательные пути.

Выбросы в атмосферу: источники

Различают природные и антропогенные источники поступления загрязнителей в воздух. Основными примесями, которые содержат выбросы в атмосферу от естественных источников, являются пыль космического, вулканического и растительного происхождения, газы и дым, образующиеся в результате лесных и степных пожаров, продукты разрушения и выветривания горных пород и почв и пр.

Уровни загрязнения воздушной среды природными источниками носят фоновый характер. Они достаточно мало изменяются со временем. Основными источниками поступления в воздушный бассейн загрязняющих веществ на современном этапе являются антропогенные, а именно − промышленность (различные отрасли), сельское хозяйство и автотранспорт.

Выбросы предприятий в атмосферу

Самыми крупными «поставщиками» различных загрязнителей в воздушный бассейн являются металлургические и энергетические предприятия, химическое производство, стройиндустрия, машиностроение.

В процессе сжигания топлива различных видов энергетическими комплексами в атмосферу выделяются большие количества сернистого ангидрида, оксидов углерода и азота, сажи. Также в выбросах (в меньших количествах) присутствует ряд других веществ, в частности углеводороды.

Основные источники пылегазовых выбросов в металлургическом производстве - плавильные печи, разливочные установки, травильные отделения, агломерационные машины, дробильноразмольное оборудование, разгрузка-погрузка материалов и пр. Наибольшую долю среди общего количества веществ, поступающих в атмосферу, занимают окись углерода, пыль, ангидрид сернистый, оксид азота. В несколько меньших количествах выбрасываются марганец, мышьяк, свинец, фосфор, пары ртути и пр. Также в процессе сталеплавильного производства выбросы в атмосферу содержат парогазовые смеси. В их состав входит фенол, бензол, формальдегид, аммиак и ряд других опасных веществ.

Вредные выбросы в атмосферу от отрасли, несмотря на небольшие объемы, представляют особую опасность для природной среды и человека, поскольку характеризуются высокой токсичностью, концентрированностью и значительным разнообразием. Поступающие в воздух смеси в зависимости от вида выпускаемой продукции могут иметь в своем составе летучие органические соединения, соединения фтора, нитрозные газы, твердые вещества, хлористые соединения, сероводород и пр.

При производстве стройматериалов и цемента выбросы в атмосферу содержат значительные количества различной пыли. Основными технологическими процессами, приводящими к их образованию, являются измельчение, обрабатывание шихт, полуфабрикатов и продуктов в потоках горячих газов и пр. Вокруг заводов, производящих различные стройматериалы, могут образовываться зоны загрязнения радиусом до 2000 м. Они характеризуются высокой концентрацией в воздухе пыли, содержащей частицы гипса, цемента, кварца, а также ряда других загрязняющих веществ.

Выбросы автотранспорта

В крупных городах огромное количество загрязнителей в атмосферу поступает от автотранспортных средств. По разным оценкам, на их долю приходится от 80 до 95%. состоят из большого количества токсичных соединений, в частности оксидов азота и углерода, альдегидов, углеводородов и пр. (всего около 200 соединений).

Наибольшие объемы выбросов отмечаются в зонах расположения светофоров и перекрестков, где автомобили передвигаются на малой скорости и в режиме холостого хода. Расчет выбросов в атмосферу показывает, что основными составляющими выхлопов в этом случае являются и углеводороды.

При этом следует отметить, что, в отличие от стационарных источников выбросов, работа автотранспорта приводит к загрязнению воздуха на городских улицах на высоте человеческого роста. В результате вредному воздействию загрязнителей подвергаются пешеходы, жители расположенных у дорог домов, а также произрастающая на прилегающих территориях растительность.

Сельское хозяйство

Влияние на человека

Согласно различным источникам, имеется прямая связь между загрязнением воздуха и рядом заболеваний. Так, например, длительность течения респираторных заболеваний у детей, которые живут в относительно загрязненных районах, в 2-2,5 раза больше, нежели у тех, что проживают в других районах.

Кроме того, в городах, характеризующихся неблагоприятной экологической обстановкой, у детей отмечены функциональные отклонения в системе иммунитета и кровообразования, нарушения компенсаторно-адаптационных механизмов к условиям внешней среды. Многими исследованиями выявлена также связь между загрязнением воздуха и смертностью людей.

Основными составляющими выбросов, поступающих в воздух от различных источников, являются взвешенные вещества, оксиды азота, углерода и серы. Выявлено, что зоны с превышением ПДК по NO 2 и CO охватывают до 90% городской территории. Приведенные макрокомпоненты выбросов способны вызвать серьезные заболевания. Накопление этих загрязнений приводит к повреждению слизистых оболочек верхних дыхательных путей, развитию легочных заболеваний. Кроме того, повышенные концентрации SO 2 могут вызвать дистрофические изменения в почках, печени и сердце, а NO 2 - токсикозы, врожденные аномалии, сердечную недостаточность, нервные расстройства и др. Некоторыми исследованиями выявлена взаимосвязь между заболеваемостью раком легких и концентрациями SO 2 и NO 2 в воздухе.


Выводы

Загрязнение окружающей природной среды и, в частности, атмосферы, имеет неблагоприятные последствия для здоровья не только настоящего, но и последующих поколений. Поэтому можно смело утверждать, что разработка мероприятий, направленных на то, чтобы уменьшить выбросы вредных веществ в атмосферу, − одна из самых актуальных на сегодняшний день проблем человечества.

За последние шесть лет количество выбросов от автомобильного транспорта в атмосферу выросло на 14%. Однако прирост за прошлый год не так велик - 2,5%. В Минприроды говорят о стабилизации ситуации и предлагают расширять автопарк на газомоторном топливе. Эксперты отмечают, что в стране всё еще слишком много старых машин, не соответствующих современным экологическим стандартам.

В 2017 году количество выбросов от автотранспорта достигло почти 14,5 млн т, что на 14% больше, чем в 2012-м. Только за последний год прирост составил около 350 тыс. т, или 2,5%. Такие данные приводятся в Единой межведомственной информационно-статистической системе (ЕМИСС) со ссылкой на сведения Росприроднадзора.

Ситуация различается в зависимости от конкретных загрязнителей атмосферы. Например, оксида углерода, диоксида азота, сернистого ангидрида, аммиака и сажи с 2012 года стало больше на 9–16%. В то же время содержание метана сократилось вдвое.

По данным «Автостата», с 2012 года автомобилей в стране стало больше на 13%: на конец 2012 года было 44,7 млн единиц автотранспорта (легковые, грузовые машины и автобусы), а на конец 2017-го - 50,6 млн. Число легковых автомобилей выросло на 15%, а всех остальных - только на 5%.

Автотранспорт остается одним из основных загрязнителей воздуха в крупных городах России, отметили в Минприроды. Динамику объема выбросов в министерстве оценивают положительно.

Несмотря на рост автопарка, меры правительства позволили в последнее десятилетие удержать объем выбросов от автотранспорта на уровне 13–14 млн т, – сообщили «Известиям» в пресс-службе Минприроды.

Речь идет прежде всего о том, что с 1 января 2016-го в Россию разрешено ввозить только автомобили, соответствующие «Евро-5», а с 1 июля того же года стандарт распространяется и на весь производимый в стране бензин.

В Минприроды предлагают переводить автотранспорт на газомоторное топливо.

Россия на рынке природного газа в качестве моторного топлива занимает скромное 14-е место. Российский парк автомобилей, работающих на природном газе, оценивается примерно в 120 тыс. машин. Но, являясь мировым лидером по запасам и производству газа, Россия может лидировать и по объему его использования на транспорте, - отметили в ведомстве.

Еще один путь решения проблемы Минприроды видит в развитии системы общественного и личного транспорта на электричестве и распространении гибридных автомобилей.

Пока общественный электротранспорт переживает кризис. По данным Росстата, перевозки пассажиров трамваями и троллейбусами с 2012 по 2016 год сократились на 38%.

Сдерживающие факторы для широкого внедрения электромобилей - их высокая стоимость и отсутствие зарядных устройств на парковочных местах и автозаправках, пояснили «Известиям» в Минтрансе. В ведомстве отметили, что для нормативно-правового регулирования вопроса в России создается Национальный консорциум развития электротранспорта, а также прорабатываются меры господдержки проектов внедрения электромобилей.

Эксперты говорят, что внедрение стандарта «Евро-5» пока не сыграло весомую роль в экологической ситуации.

Вклад новых авто в загрязнение атмосферы невелик. Беда в том, что у нас эксплуатируется огромное количество старых машин, - пояснил «Известиям» директор Института экономики транспорта и транспортной политики НИУ ВШЭ Михаил Блинкин.

Из всех легковых машин стандартам «Евро-5» и выше соответствуют только 13%, рассказал «Известиям» руководитель пресс-службы «Автостата» Азат Тимерханов. Машины старше 10 лет составляют 54%.

Учет вредных выбросов от автотранспорта сейчас ведется на основании сжигания моторного топлива в двигателях внутреннего сгорания, отметил завкафедрой Московского автомобильно-дорожного государственного технического университета Юрий Трофименко.

Образующиеся газообразные токсичные вещества, как правило, быстро рассеиваются, не создавая опасных для людей концентраций. Кроме мелкодисперсных частиц размером менее 10 мкм, которые адсорбируют на себе канцерогенные вещества, проникающие в легкие человека. В статистике ЕМИСС они представлены только сажей, но на самом деле в результате эксплуатации авто выбрасывается более 50 наименований таких частиц. Их концентрации в крупных городах мира часто превышают предельно допустимые. Основные источники - шины и дорожное покрытие. По словам эксперта, эту проблему решить трудно, но ученые занимаются исследованиями.

В отличие от промышленных источников загрязнения, привязанных к определенным площадкам и отделенных от жилой застройки санитарно-защитными зонами, автомобиль является движущимся источником загрязнения, который постоянно встречается в жилых районах и местах отдыха. Автотранспорт загрязняет нижние, приземные слои атмосферы и способствует накоплению вредных веществ в воздухе.

Выхлопные газы автотранспорта представляют собой очень сложную смесь веществ (табл.2.1).

Таблица 2.1

Примерный состав выхлопных газов

карбюраторных и дизельных двигателей

Одни вещества, такие как азот, кислород, диоксид углерода, вода, не представляют опасности. Другие, и в первую очередь органические соединения, а также оксид углерода(II) и азота (IV), являются сильными токсикантами и при превышении допустимой дозы могут вызывать тяжелые отравления вплоть до смертельного исхода. Наиболее опасными компонентами автомобильных выбросов являются циклические и полициклические углеводороды, которые образуются при неполном сгорании топлива в условиях дефицита кислорода. Самое известное и опасное вещество из этого ряда – бенз(а)пирен.

Каждый из вредных компонентов выхлопных газов оказывает специфическое воздействие на организм человека в целом и отдельные органы и системы органов.

СО (угарный газ) – постоянный компонент в продуктах сгорания всех видов топлива. Он не имеет цвета и запаха, поэтому в малой концентрации его трудно обнаружить. Оксид углерода (II), попадая в легкие, легко соединяется с гемоглобином крови, образуя карбоксигемоглобин, не способный переносить кислород. Основные признаки отравления окисью углерода:

ухудшение остроты зрения и способности оценивать длительность интервалов времени (концентрация СО более 0,4 об. %);

нарушение некоторых психомоторных функций головного мозга (при содержании СО в воздухе в интервале от 2 до 5 об. %);

ощутимые изменения работы сердца и легких (концентрация СО более 5 об. %);

головная боль, сонливость, мышечные спазмы, нарушение дыхания и смерть (при содержании угарного газа 10 ÷ 80 об. %).

Степень воздействия СО на организм зависит не только от его концентрации, но и от времени пребывания человека в условиях повышенного содержания этого газа. Образование карбоксигемоглобина в крови – процесс обратимый: если поступление в легкие СО прекращается, то через 3 – 4 часа его содержание в крови уменьшается в два раза. Однако необходимо знать, что оксид углерода (II) – химически стабильное вещество, и в атмосфере он может находиться в неизменном виде до четырех месяцев.

NO, NO 2 – оксиды азота. Эти газы обладают специфическим запахом, который начитает ощущаться при концентрации в воздухе более 10 мг/м 3 . При контакте оксидов азота с водой образуются азотная (HNO 3 ) и азотистая (HNO 2 ) кислоты, повышенное содержание которых во вдыхаемом воздухе может вызвать отек легких.

Ароматические (циклические и полициклические) углеводороды обладают наркотическим действием и в малых концентрациях (до 15 мг/м 3) снижают активность, вызывают головокружение и легкую головную боль. При длительном, более двух часов, нахождении человека в воздухе с содержанием углеводородов более 200 мг/м 3 развивается кашель, сильная головная боль и далее – удушье. Все ароматические углеводороды обладают более или менее выраженными канцерогенными свойствами, т.е. способностью вызывать и стимулировать рост злокачественных опухолей. Бенз(а)пирен С 20 Н 16 – самый сильный канцероген природного происхождения.

Альдегиды (главным образом, формальдегид СН 2 О ) оказывают раздражающее действие на слизистые оболочки глаз, дыхательных путей. Запах формальдегида отмечается при концентрации в воздухе около 0,2 мг/м 3 . Длительное пребывание в атмосфере с содержанием формальдегида более 20 мг/м 3 приводит к слабости, головной боли, потере аппетита, бессоннице, сильному раздражению слизистой оболочки глаз.

Об опасности вышеописанных веществ можно судить по величинам их ПДК, приведенным в табл. 2.2.

Таблица 2.2

Предельно допустимые концентрации в воздухе рабочей зоны (ПДК р.з.)

для токсичных веществ в составе выхлопных газов автомобилей

Для предупреждения опасности здоровью работающих в гаражах, где хранятся и подвергаются техническому осмотру и текущему ремонту автомобили, необходимо следить за накоплением вредных веществ, попадающих в воздух при выезде или въезде автомобилей, а также при их обслуживании. Один из методов подобного контроля – расчеты концентраций загрязняющих веществ в гараже, учитывающие количество передвигающихся единиц автотранспорта и деятельность по их обслуживающих.

Для оценки уровня загрязнения воздуха выбросами автотранспорта в помещении одноэтажного гаража пользуются формулой

G = g∙N∙k∙c, (2.4)

где – количество вредного вещества, выделившегося за определенное время работы с учетом всех передвижений транспорта и его обслуживания, г;

– удельное количество вредного вещества, отнесенное к одному выезду из помещения и условной мощности в одну лошадиную силу (л.с.) на один выезд. g определяют по табл. 2.5;

– мощность автомобиля, л.с., (табл. 2.6);

– число выездов автомобилей из помещения в течение одного часа, выезд/ч;

– коэффициент для учета интенсивности движения автомобилей, определяется по табл. 2.7.

Таблица 2.5

Удельные количества вредных веществ,

выделяющихся в составе выхлопных газов

при одном выезде автомобиля из помещения, г/(л.с.∙выезд)

Примечание. В графах 4 и 5 приведены данные для грузовых автомобилей и автобусов: в числителе – с карбюраторными двигателями; в знаменателе – с дизельными двигателями.

Таблица 2.6

Средняя мощность двигателей автомобилей различных типов

Таблица 2.7

Коэффициент, учитывающий интенсивность движения автомобилей

Определив по формуле (2.4) количества вредных веществ, попавших в воздух гаража с выхлопными газами работающих двигателей автомобилей, можно рассчитать концентрации этих веществ и, сравнив их с соответствующими ПДК р.з. , тем самым установить степень опасности загрязнения воздуха для работающих в данном помещении.

Пример.

Оценить состояние воздуха в гараже с точки зрения концентрации в нем основных токсичных компонентов выхлопных газов – СО и NO 2 , через час после начала работы. За этот промежуток времени из помещения выехало восемь грузовых машин (из них 5 – с бензиновым двигателем) и 2 легковых автомобиля. Площадь гаража 1200 м 2 , высота 4 м. Кратность обмена воздуха в гараже в соответствии со СН и П, равна 10 объемов в час (n = 10/ч). Дать экологическую оценку уровня загрязнения воздуха (сравнением с соответствующими значениями ПДК).

Решение:

Вначале, воспользовавшись формулой 2.4, рассчитывают выброс загрязняющих веществ. Для этого по таблицам 2.5, 2.6 и 2.7 определяют соответственно удельные количества каждого вредного вещества, выделяющиеся при одном выезде (g), мощность двигателей автомобилей N и коэффициенты, учитывающие интенсивность движения автомобилей (с).

Для расчета концентрации необходимо знать объем воздуха, участвующего в разбавлении, Эта величина определяется исходя из параметров помещения и условий естественной вентиляции:

Через час от начала рабочего дня концентрации оксида углерода и диоксида азота составят:

Вывод .

Сравнение полученных расчетом величин концентраций СО и NO 2 cо значениями ПДК р.з. для этих веществ показывает, что порог опасности значительно превышен. Для сохранения здоровья работающих гараж должен быть оборудован системой принудительной вентиляции.

Задача 1 .

NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и два микроавтобуса. Три дизельных автобуса находились на посту текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 2 .

NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали два грузовых автомобиля с карбюраторным двигателем и три микроавтобуса. Один дизельный автобус находился на посту текущего ремонта, один грузовой автомобиль с бензиновым двигателем – находился на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 3 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1400 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и два автобуса с бензиновым двигателем. Два дизельных автобуса находились на посту текущего ремонта, три (с бензиновым двигателем) – на посту мойки и уборки. . Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 4 .

Дать экологическую оценку загрязнения воздуха гаража площадью 680 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через четыре часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и три микроавтобуса. Один дизельный автобус находился на текущем ремонте, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 5 .

Дать экологическую оценку загрязнения воздуха гаража площадью 740 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два микроавтобуса. Три дизельных автобуса находились на посту технического обслуживания и текущего ремонта. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 6 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1040 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и один микроавтобус. Два грузовых автомобиля находились на посту текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 7 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1260 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через четыре часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два автобуса с карбюраторным двигателем. Три дизельных автобуса находились на посту текущего ремонта. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 8 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1200 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и три микроавтобуса. Два микроавтобуса находились на посту текущего ремонта и техобслуживания, один автобус с бензиновым двигателем – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 9 .

Дать экологическую оценку загрязнения воздуха гаража площадью 880 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и один микроавтобус. Один дизельный автобус находился на посту технического обслуживания, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 10 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1120 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали два грузовых автомобиля и два микроавтобуса. Три легковых автомобиля находились на посту текущего ремонта, один– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 11 .

Дать экологическую оценку загрязнения воздуха гаража площадью 840 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и один микроавтобус. Три дизельных автобуса находились на посту текущего ремонта, два (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 12 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1240 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и два микроавтобуса. Два дизельных автобуса находились на посту технического обслуживания, один легковой автомобиль – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 10.

Задача 13 .

NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и один микроавтобус. Четыре дизельных автобуса находились на посту текущего ремонта, два автобуса с бензиновым двигателем – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 14 .

NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и три микроавтобуса. Один дизельный автобус находился на посту текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 10.

Задача 15 .

NО 2 и углерода СО через пять часов после начала рабочего дня. За это время из гаража выехали семь легковых автомобилей и два микроавтобуса. Три микроавтобуса находились на посту текущего ремонта, один автобус с бензиновым двигателем и один джип– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 16 .

NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два микроавтобуса. Три автобуса с карбюраторным двигателем находились на посту текущего ремонта, один микроавтобус– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 17 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1280 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и три микроавтобуса. Три микроавтобуса были на текущем ремонте, один автобус (с бензиновым двигателем) находился на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 18 .

NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали десять автобусов с бензиновым двигателем и один микроавтобус. Два дизельных автобуса находились на посту текущего ремонта, один легковой автомобиль – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 19 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1600 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и три микроавтобуса. Один дизельный автобус находился на текущем ремонте, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 20 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1280 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и один грузовой. Два микроавтобуса находились на посту текущего ремонта и техобслуживания, один легковой автомобиль– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 21 .

Дать экологическую оценку загрязнения воздуха гаража площадью 960 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и три микроавтобуса. Один дизельный автобус находился на посту текущего ремонта. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 22 .

NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и один микроавтобус. Два автобуса с карбюраторным двигателем находились на посту текущего ремонта, один микроавтобус– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 23 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1280 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через четыре часа после начала рабочего дня. За это время из гаража выехали семь легковых автомобилей и три микроавтобуса. Четыре дизельных автобуса находились на посту технического обслуживания текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, согласно строительным нормам, равна 12.

Задача 24 .

Дать экологическую оценку загрязнения воздуха гаража площадью 640 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два микроавтобуса. Один дизельный автобус находился на посту текущего ремонта, два (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 25 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1920 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали шесть легковых автомобилей и четыре микроавтобуса. Два дизельных автобуса находились на посту текущего ремонта, три (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 10.

Задача 26 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1280 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали восемь легковых автомобилей и два микроавтобуса. Два дизельных автобуса находились на посту текущего ремонта, два (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 27 .

Дать экологическую оценку загрязнения воздуха гаража площадью 960 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и три микроавтобуса. Три дизельных автобуса находились на посту текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 28 .

Дать экологическую оценку загрязнения воздуха гаража площадью 800 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через четыре часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два микроавтобуса. Три микроавтобуса находились на посту технического обслуживания и текущего ремонта, один автобус с бензиновым двигателем – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 29 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1600 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали восемь легковых автомобилей и четыре микроавтобуса. Три дизельных автобуса находились на посту текущего ремонта, один легковой автомобиль– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

Задача 30 .

Дать экологическую оценку загрязнения воздуха гаража площадью 1440 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали четыре автобуса с карбюраторным двигателем и два микроавтобуса. Три дизельных автобуса находились на посту текущего ремонта, два микроавтобуса и один легковой автомобиль – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

ЗАГРЯЗНЕНИЕ ЗЕМЕЛЬ

Под земельными ресурсами понимаются земли, систематически используемые или пригодные к использованию для конкретных целей.

Загрязнение земель – это привнесение, накопление и возникновение на поверхностном слое земли (почвы) новых, обычно не характерных для нее физических свойств, химических или биологических агентов или превышение указанных природных параметров почвы по сравнению со среднемноголетним уровнем. Оно может быть вызвано попаданием в почву бытовых и производственных отходов, примесей из загрязненного атмосферного воздуха и водных источников. Накопление химических веществ, которые вносятся в почву для повышения урожайности сельскохозяйственных культур (удобрений, средств защиты растений), также приводит к изменению ее природных свойств.

Загрязнение почвы меняет ход почвообразовательного процесса, резко снижает урожаи, вызывает накопление токсичных веществ, таких как тяжелые металлы, пестициды, в растениях. Из них эти токсичные вещества прямо или косвенно (с продуктами растительного или животного происхождения) попадают в организм человека.

Привнесение загрязняющих веществ в почву ослабляет ее способность к самоочищению от болезнетворных и других чуждых ей микроорганизмов, что увеличивает опасность микробиологического загрязнения и распространения болезней. Так, в незагрязненных почвах возбудители дизентерии и тифа сохраняются в течение 2-3 суток, а в загрязненных этот срок увеличивается для дизентерии до четырех-пяти месяцев, а для тифа – до полутора лет.

Защита и восстановление земель осуществляется путем ограничения и запрещения использовать в сельскохозяйственной практике токсичных и биохимически стойких веществ в качестве пестицидов, превращения в компост бытовых отходов без их предварительной сортировки (для удаления опасных компонентов), борьбы с различными типами эрозии почв, рекультивации земель.

Выбросы в атмосферу.

1. Автомобильный транспорт является крупнейшим загрязнителем окружающей среды и, в первую очередь, атмосферного воздуха. Снижение выбросов загрязняющих атмосферу веществ осуществляется по следующим направлениям:

а) через поэтапную замену автопарка более современными моделями автомобилей, обеспечивающими экологически безопасные нормы выбросов загрязняющих веществ в атмосферу (применение впрыска топлива с электронным управлением; применение каталитических нейтрализаторов);

б) через производство качественных сортов топлива (с низким содержанием серы, бензола, углеводородов);

в) через модернизацию эксплуатируемых автомобилей (установка оборудования для работы двигателей на газовом топливе);

г) через поддержание установленных ГОСТами норм выбросов загрязняющих веществ в атмосферу в процессе эксплуатации автомобилей.

2. Приведение экологических показателей выпускаемых автомобилей в соответствие с международными нормами на основе Правил ЕЭК ООН (Женевское соглашение 1958 года) и Соглашения с Европейским Союзом (1994 год), планируется произвести:

– с 2006 года – на экологический класс 2;

– с 2008 года – на экологический класс 3;

– с 2010 года – на экологический класс 4;

– с 2014 года – на экологический класс 5.

Данные сроки перехода автомобильной промышленности на экологические стандарты установлены постановлением Правительства РФ № 609 от 12 октября 2005 года «Об утверждении технического регламента «О требованиях к выбросам автомобильной техникой, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ».

В соответствии с постановлением Правительства РФ 20 января 2012 г. № 2 «О внесении изменений в пункт 13 технического регламента «О требованиях к выбросам автомобильной техникой, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ»» действие одобрений типа транспортного средства и сертификатов соответствия в отношении автомобильной техники экологического класса 4 и сертификатов соответствия в отношении двигателей внутреннего сгорания экологического класса 4 ограничивается сроком до 31 декабря 2015 г. включительно.

3. Справка. Переход Европейского Союза на автотранспорт с нормативными экологическими показателями осуществлялся:

на Евро-3 – с 2000 года;

на Евро-4 – с 2005 года;

на Евро-5 – с 2009 года.

4. Повышенные экологические требования к моторным топливам регламентируются Техническим регламентом «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и топочному мазуту», утвержденному постановлением Правительства РФ № 118 от 27.02.2008 года.

В соответствии с данным техническим регламентом выпуск в оборот автомобильного бензина и дизельного топлива допускается в отношении:

— класса 2 — до 31 декабря 2012 г.;
— класса 3 — до 31 декабря 2014 г.;
— класса 4 — до 31 декабря 2015 г.;
— класса 5 — срок не ограничен.

5. Установка оборудования для работы двигателей на газовом топливе производится на основании руководящего документа РД 3112199-1094-03 «Руководство по организации эксплуатации газобаллонных автомобилей, работающих на сжиженном нефтяном газе» и руководящего документа РД 03112194-1095-03 «Руководство по организации эксплуатации газобаллонных автомобилей, работающих на компримированном природном газе».

Оба документа утверждены Департаментом автотранспорта Министерства транспорта РФ.

6. В процессе эксплуатации автомобилей выбросы загрязняющих веществ регламентированы следующими ГОСТами:

– ГОСТом Р 52033-2003 «Автомобили с бензиновыми двигателями. Выбросы загрязняющих веществ с отработавшими газами»;

– ГОСТом Р 17.2.2.06-99 «Атмосфера. Нормы и методы измерения содержания оксида углерода и углеводородов в отработавших газах газобаллонных автомобилей»;

– ГОСТом Р 52160-2003 «Автотранспортные средства, оснащенные двигателями с воспламенением от сжатия. Дымность отработавших газов».

Автотранс-консультант.ру.

Угарный газ и окислы азота, столь интенсивно выделяемые на первый взгляд невинным голубоватым дымком глушителя автомобиля - вот одна из основных причин головных болей, усталости, немотивированного раздражения, низкой трудоспособности. Сернистый газ способен воздействовать на генетический аппарат, способствуя бесплодию и врожденным уродствам, а все вместе эти факторы ведут к стрессам, нервным проявлениям, стремлению к уединению, безразличию к самым близким людям. В больших городах также более широко распространены заболевания органов кровообращения и дыхания, инфаркты, гипертония и новообразования. По расчетам специалистов, «вклад» автомобильного транспорта в атмосферу составляет до 90% по окиси углерода и 70% по окиси азота. Автомобиль также добавляет в почву и воздух тяжелые металлы и другие вредные вещества. Основными источниками загрязнения воздушной среды автомобилей являются отработавшие газы ДВС, картерные газы, топливные испарения.

Вредные вещества, загрязняющие атмосферу

Образование токсичных веществ - продуктов неполного сгорания и окислов азота в цилиндре двигателя в процессе сгорания происходит принципиально различными путями. Первая группа токсичных веществ связана с химическими реакциями окисления топлива, протекающими как в предпламенный период, так и в процессе сгорания - расширения. Вторая группа токсичных веществ образуется при соединении азота и избыточного кислорода в продуктах сгорания. Реакция образования окислов азота носит термический характер и не связана непосредственно с реакциями окисления топлива.

К основным токсичным выбросам автомобиля относятся: отработавшие газы (ОГ), картерные газы и топливные испарения. Отработавшие газы, выбрасываемые двигателем, содержат окись углерода (СО), углеводороды (СХHY), окислы азота (NOX), бенз(а)пирен, альдегиды и сажу. Картерные газы - это смесь части отработавших газов, проникшей через неплотности поршневых колец в картер двигателя, с парами моторного масла. Топливные испарения поступают в окружающую среду из системы питания двигателя: стыков, шлангов и т.д. Распределение основных компонентов выбросов у карбюраторного двигателя следующее: отработавшие газы содержат 95% СО, 55% СХHY и 98% NOX, картерные газы по - 5% СХHY, 2% NOX, а топливные испарения - до 40% СХHY.

В общем случае в составе отработавших газов двигателей могут содержаться следующие нетоксичные и токсичные компоненты: О, О2, О3, С, СО, СО2, СН4, CnHm, CnHmО, NO, NO2, N, N2, NH3, HNO3, HCN, H, H2, OH, H2O.

Основными токсичными веществами - продуктами неполного сгорания являются сажа, окись углерода, углеводороды, альдегиды.

Вредные токсичные выбросы: СО, NOX, CXHY, RXCHO, SO2, сажа, дым.

СО (оксид углерода) - этот газ без цвета и запаха, более легкий, чем воздух. Образуется на поверхности поршня и на стенке цилиндра, в котором активация не происходит вследствие интенсивного теплоотвода стенки, плохого распыления топлива и диссоциации СО2 на СО и О2 при высоких температурах.

Во время работы дизеля концентрация СО незначительна (0,1…0,2%). У карбюраторных двигателей при работе на холостом ходу и малых нагрузках содержание СО достигает 5…8% из-за работы на обогащенных смесях. Это достигается для того, чтобы при плохих условиях смесеобразование обеспечить требуемое для воспламенения и сгорания число испарившихся молекул.

NOX (оксиды азота) - самый токсичный газ из ОГ.

N - инертный газ при нормальных условиях. Активно реагирует с кислородом при высоких температурах.

Выброс с ОГ зависит от температуры среды. Чем больше нагрузка двигателя, тем выше температура в камере сгорания, и соответственно увеличивается выброс оксидов азота.

Кроме того, температура в зоне горения (камера сгорания) во многом зависит от состава смеси. Слишком обедненная или обогащенная смесь при горении выделяет меньшее количество теплоты, процесс сгорания замедляется и сопровождается большими потерями теплоты в стенке, т.е. в таких условиях выделяется меньшее количество NOx, а выбросы растут, когда состав смеси близок к стехиометрическому (1 кг топлива к 15 кг воздуха). Для дизельных двигателей состав NOx зависит от угла опережения впрыска топлива и периода задержки воспламенения топлива. С увеличением угла опережения впрыска топлива удлиняется период задержки воспламенения, улучшается однородность топливовоздушной смеси, большее количество топлива испаряется, и при сгорании резко (в 3 раза) увеличивается температура, т.е. увеличивается количество NOx.

Кроме того, с уменьшением угла опережения впрыска топлива можно существенно снизить выделение оксидов азота, но при этом значительно ухудшаются мощностные и экономические показатели.

Гидроводороды (СxНy) - этан, метан, бензол, ацетилен и др. токсичные элементы. ОГ содержат около 200 разных гидроводородов.

В дизельных двигателях СxНy образуются в камере сгорания из-за гетерогенной смеси, т.е. пламя гаснет в очень богатой смеси, где не хватает воздуха за счет неправильной турбулентности, низкой температуры, плохого распыления.

ДВС выбрасывает большее количество СxНy, когда работает в режиме холостого хода, за счет плохой турбулентности и уменьшения скорости сгорания.

Дым - непрозрачный газ. Дым может быть белым, синим, черным. Цвет зависит от состояния ОГ.

Белый и синий дым - это смесь капли топлива с микроскопическим количеством пара; образуется из-за неполного сгорания и последующей конденсации.

Белый дым образуется, когда двигатель находится в холодном состоянии, а потом исчезает из-за нагрева. Отличие белого дыма от синего определяется размером капли: если диаметр капли больше длины волны синего цвета, то глаз воспринимает дым как белый.

К факторам, определяющим возникновение белого и синего дыма, а также его запах в ОГ, относятся температура двигателя, метод образования смеси, топливные характеристики (цвет капли зависит от температуры ее образования: при увеличении температуры топлива дым приобретает синий цвет, т.е. уменьшается размер капли).

Кроме того, бывает синий дым от масла.

Наличие дыма показывает, что температура недостаточна для полного сгорания топлива.

Черный дым состоит из сажи.

Дым отрицательно влияет на организм человека, животных и растительность.

Сажа - представляет собой бесформенное тело без кристаллической решетки; в ОГ дизельного двигателя сажа состоит из неопределенных частице с размерами 0,3... 100 мкм.

Причина образования сажи заключается в том, что энергетические условия в цилиндре дизельного двигателя оказываются достаточными, чтобы молекула топлива разрушилась полностью. Более легкие атомы водорода диффундируют в богатый кислородом слой, вступают с ним в реакцию и как бы изолируют углеводородные атомы от контакта с кислородом.

Образование сажи зависит от температуры, давления в камере сгорания, типа топлива, отношения топливо-воздух.

SO2 (оксид серы) - образуется во время работы двигателя из топлива, получаемого из сернистой нефти (особенно в дизелях); эти выбросы раздражают глаза, органы дыхания.

SO2; H2S - очень опасны для растительности.

Главным загрязнителем атмосферного воздуха свинцом в Российской Федерации в настоящее время является автотранспорт, использующий этилированный бензин: от 70 до 87 % общей эмиссии свинца по различным оценкам. РЬО (оксиды свинца) - возникают в ОГ карбюраторных двигателей, когда используется этилированный бензин, чтобы увеличить октановое число для уменьшения детонации (это очень быстрое, взрывное сгорание отдельных участков рабочей смеси в цилиндрах двигателя со скоростью распространения пламени до 3000 м/с, сопровождающееся значительным повышением давления газов). При сжигании одной тонны этилированного бензина в атмосферу выбрасывается приблизительно 0,5... 0,85 кг оксидов свинца. По предварительным данным, проблема загрязнения окружающей среды свинцом от выбросов автотранспорта становится значимой в городах с населением свыше 100 000 человек и для локальных участков вдоль автотрасс с интенсивным движением. Радикальный метод борьбы с загрязнением окружающей среды свинцом выбросами автомобильного транспорта - отказ от использования этилированных бензинов. По данным 1995г. 9 из 25 нефтеперерабатывающих заводов России перешли на выпуск неэтилированных бензинов. В 1997 году доля неэтилированного бензина в общем объеме производства составила 68%. Однако, из-за финансовых и организационных трудностей полный отказ от производства этилированных бензинов в стране задерживается.

Альдегиды (RxCHO) - образуются, когда топливо сжигается при низких температурах или смесь очень бедная, а также из-за окисления тонкого слоя масла в стенке цилиндра.

При сжигании топлива при высоких температурах эти альдегиды исчезают.

Загрязнение воздуха идет по трем каналам: 1)ОГ, выбрасываемые через выхлопную трубу (65%); 2)картерные газы (20%); 3)углеводороды в результате испарения топлива из бака, карбюратора и трубопроводов (15%).