Методика выбросов от автотранспорта. Загрязнение атмосферы выбросами транспорта - реферат


Вследствие загрязнения среды обитания вредными веществами отработавших газов двигателей внутреннего сгорания зоной экологического бедствия для населения становятся целые регионы, в особенности крупные города. Проблема дальнейшего снижения вредных выбросов двигателей все более обостряется ввиду непрерывного увеличения парка эксплуатируемых автотранспортных средств, уплотнения автотранспортных потоков, нестабильности показателей самих мероприятий по снижению вредных веществ в процессе эксплуатации. В денежном исчислении величина ежегодного экологического ущерба (загрязнение атмосферы, шум, воздействие на климат) от функционирования автотранспортного комплекса Российской Федерации достигает 2-3 % валового национального продукта при общих экологических потерях 10 % и затратах на природоохранные мероприятия не более 1 %. Основная доля ущерба от автотранспорта (78 %) связана с загрязнением атмосферного воздуха выбросами вредных веществ (что во многом объясняется низким качеством отечественных топлив в сравнении с европейскими стандартами), 16 % ущерба приходится на последствия шумового воздействия транспорта на население.

Общее количество загрязняющих веществ, поступивших в атмосферный воздух на территории Российской Федерации от выхлопов газа автомобильного транспорта, в 2000 г. составило 11 824,2 тыс. т.

Принцип работы автомобильных двигателей основан на превращении химической энергии жидких и газообразных топлив нефтяного происхождения в тепловую, а затем – в механическую энергию. Жидкие топлива в основном состоят из углеводородов, газообразные, наряду с углеводородами, содержат негорючие газы, такие как азот и углекислый газ. При сгорании топлива в цилиндрах двигателей образуются нетоксичные (водяной пар, углекислый газ) и токсичные вещества. Последние являются продуктами сгорания или побочных реакций, протекающих при высоких температурах. К ним относятся окись углерода СО, углеводороды C m H n , окислы азота (NO и NO 2) обычно обозначаемые NO X . Кроме перечисленных веществ вредное воздействие на организм человека оказывают выделяемые при работе двигателей соединения свинца, канцерогенные вещества, сажа и альдегиды. В таблице 1 приведено содержание основных токсичных веществ в отработавших газах бензиновых двигателей.

Таблица 1.

Основным токсичным компонентом отработавших газов, выделяющихся при работе бензиновых двигателей, является окись углерода. Она образуется при неполном окислении углерода топлива из-за недостатка кислорода во всем объеме цилиндра двигателя или в отдельных его частях.

Основным источником токсичных веществ, выделяющихся при работе дизелей, являются отработавшие газы. Картерные газы дизеля содержат значительно меньшее количество углеводородов по сравнению с бензиновым двигателем в связи с тем, что в дизеле сжимается чистый воздух, а прорвавшиеся в процессе расширения газы содержат небольшое количество углеводородных соединений, являющихся источником загрязнений атмосферы.

Таблица 2.

Загрязнение воздуха автомобильным транспортом происходит в результате сжигания топлива. Химический состав выбросов зависит от вида и качества топлива, технологии производства, способа сжигания в двигателе и его технического состояния.

Наиболее неблагоприятными режимами работы являются малые скорости и «холостой ход» двигателя, когда в атмосферу выбрасываются загрязняющие вещества в количествах, значительно превышающих выброс на нагрузочных режимах. Техническое состояние двигателя непосредственно влияет на экологические показатели выбросов. Отработавшие газы бензинового двигателя с неправильно отрегулированными зажиганием и карбюратором содержат оксид углерода в количестве, превышающем норму в 2-3 раза.

Отработавшие газы двигателя внутреннего сгорания содержат около 200 компонентов. Период их существования длится от нескольких минут до 4-5 лет. По химическому составу и свойствам, а также характеру воздействия на организм человека их объединяют в группы.

Первая группа. В нее входят нетоксичные вещества: азот, кислород, водород, водяной пар, углекислый газ и другие естественные компоненты атмосферного воздуха. В этой группе заслуживает внимания углекислый газ (СО 2), содержание которого в отработавших газах в настоящее время не нормируется, однако вопрос об этом ставится в связи с особой ролью СО 2 в «парниковом эффекте».

Вторая группа. К этой группе относят только одно вещество – оксид углерода, или угарный газ (СО). Продукт неполного сгорания нефтяных видов топлива, он не имеет цвета и запаха, легче воздуха. В кислороде и на воздухе оксид углерода горит голубоватым пламенем, выделяя много теплоты и превращаясь в углекислый газ. Оксид углерода обладает выраженным отравляющим действием. Оно обусловлено его способностью вступать в реакцию с гемоглобином крови, приводя к образованию карбоксигемоглобина, который не связывает кислород. Вследствие этого нарушается газообмен в организме, появляется кислородное голодание и нарушается функционирование всех систем организма. Отравлению угарным газом часто подвержены водители автотранспортных средств при ночевках в кабине с работающим двигателем или при прогреве двигателя в закрытом гараже.

Третья группа. В ее составе оксиды азота, главным образом, NO – оксид азота и NO 2 – диоксид азота. Это газы, образующиеся в камере сгорания двигателя при температуре 2800°С и давлении около 1 МПа. Оксид азота – бесцветный газ, не взаимодействует с водой и мало растворим в ней, не вступает в реакции с растворами кислот и щелочей. Легко окисляется кислородом воздуха и образует диоксид азота. При обычных атмосферных условиях NO полностью превращается в NO 2 – газ бурого цвета с характерным запахом. Он тяжелее воздуха, поэтому собирается в углублениях, канавах и представляет большую опасность при техническом обслуживании транспортных средств.

Четвертая группа. В эту наиболее многочисленную по составу группу входят различные углеводороды, то есть соединения типа С Х Н У – этан, метан, бензол, ацетилен и др. токсичные вещества. В отработавших газах содержатся углеводороды различных гомологических рядов: парафиновые (алканы), нафтеновые (цикланы) и ароматические (бензольные), всего около 160 компонентов. Они образуются в результате неполного сгорания топлива в двигателе.

Несгоревшие углеводороды являются одной из причин появления белого или голубого дыма. Это происходит при запаздывании воспламенения рабочей смеси в двигателе или при пониженных температурах в камере сгорания.

Углеводороды под действием ультрафиолетового излучения Солнца вступают в реакцию с оксидами азота, в результате образуются новые токсичные продукты – фотооксиданты, являющиеся основой «смога» (от англ, smoke – дым и fog – туман).

Главным токсичным компонентом смога является озон. К фотооксидантам также относятся угарный газ, соединения азота, перекиси и др. Фотооксиданты биологически активны, оказывают вредное воздействие на живые организмы, ведут к росту легочных и бронхиальных заболеваний людей, разрушают резиновые изделия, ускоряют коррозию металлов, ухудшают условия видимости.

Пятая группа. Ее составляют альдегиды – органические соединения, содержащие альдегидную группу С, связанную с углеводородным радикалом (СН 3 , С 6 Н 5 или др.).

В отработавших газах присутствуют в основном формальдегид, акролеин и уксусный альдегид. Наибольшее количество альдегидов образуется на режимах холостого хода и малых нагрузок, когда температуры сгорания в двигателе невысокие.

Формальдегид НСНО – бесцветный газ с неприятным запахом, тяжелее воздуха, легко растворимый в воде. Он раздражает слизистые оболочки человека, дыхательные пути, поражает центральную нервную систему. Обусловливает запах отработавших газов, особенно у дизелей.

Акролеин СН 2 =СН-СН=О, или альдегид акриловой кислоты, – бесцветный ядовитый газ с запахом подгоревших жиров. Оказывает воздействие на слизистые оболочки.

Уксусный альдегид СН 3 СНО – газ с резким запахом и токсичным действием на человеческий организм.

Шестая группа. В нее входят взвешенные твердые вещества (сажа и другие дисперсные частицы (продукты износа двигателей, аэрозоли, масла, нагар и др.)), которые состоят из мелкодисперсных частиц (диаметром менее 1 мкм), способные находиться во взвешенном состоянии в течение суток. Они состоят из разных материалов, включая неорганическую золу, кислые сульфаты или нитраты, дым, содержащий полициклические ароматические углеводороды, тонкодисперсную пыль, остатки свинца и асбеста.

Проблема загрязнения воздуха городов мира взвешенными частицами диаметром менее 10 мкм, называемые обычно РМ-10, признана одной из важнейших.

В России внимание этой проблеме начинает уделяться только сейчас. На сети мониторинга загрязнения атмосферы в России измеряются концентрации лишь суммы взвешенных веществ. Для развития сети станций, измеряющих концентрации мелкодисперсных взвешенных частиц диаметром менее 10 мкм недостаточно финансовых ресурсов.

Полициклические ароматические углеводороды относятся к большому числу органических соединений, химическая структура которых состоит из двух и более бензольных колец. Наиболее широко известное соединение – бенз(а)пирен.

Сажа – частицы твердого углерода черного цвета, образующиеся при неполном сгорании и термическом разложении углеводородов топлива. Она не представляет непосредственной опасности для здоровья человека, но может раздражать дыхательные пути. Создавая дымный шлейф за транспортным средством, сажа ухудшает видимость на дорогах. Наибольший вред сажи проявляется в адсорбировании на ее поверхности бенз(а)пирена, который в этом случае оказывает более сильное негативное воздействие на организм человека, чем в чистом виде. Поэтому уменьшение ее выбросов – весьма актуальная задача, от решения которой зависят как экологические показатели воздушного бассейна, так и развитие дизельного транспорта в целом. В настоящее время для очистки отработавших газов дизелей от сажевых (твердых) частиц во многих странах находят применение сажевые фильтры.

По данным работы, диаметр первичных сажевых частиц составляет 0,02-0,17 мкм. В отработавших газах сажа находится в виде образований неправильной формы размером 0,3-100 мкм. Наибольшее количество частиц сажи имеет размеры до 0,5 мкм.

Седьмая группа. Представляет собой сернистые соединения – такие неорганические газы, как сернистый ангидрид, сероводород, которые появляются в составе отработавших газов двигателей, если используется топливо с повышенным содержанием серы. Значительно больше серы присутствует в дизельных топливах по сравнению с другими видами топлив, используемых на транспорте.

Для отечественных месторождений нефти (особенно в восточных районах) характерен высокий процент присутствия серы и сернистых соединений. Поэтому и получаемое из нее дизельное топливо по устаревшим технологиям отличается более тяжелым фракционным составом и вместе с тем хуже очищено от сернистых и парафиновых соединений. Согласно европейским стандартам, введенным в действие в 1996 г., содержание серы в дизельном топливе не должно превышать 0,005 г/л, а по российскому стандарту – 1,7 г/л. Наличие серы усиливает токсичность отработавших газов дизелей и является причиной появления в них вредных сернистых соединений. Сернистые соединения обладают резким запахом, тяжелее воздуха, растворяются в воде. Они оказывают раздражающее действие на слизистые оболочки горла, носа, глаз человека, могут привести к нарушению углеводного и белкового обмена и угнетению окислительных процессов, при высокой концентрации (свыше 0,01 %) – к отравлению организма.

Восьмая группа. Компоненты этой группы – свинец и его соединения – встречаются в отработавших газах карбюраторных автомобилей только при использовании этилированного бензина, имеющего в своем составе присадку, повышающую октановое число. Оно определяет способность двигателя работать без детонации. Чем выше октановое число, тем более стоек бензин против детонации. Детонационное сгорание рабочей смеси протекает со сверхзвуковой скоростью, что в 100 раз быстрее нормального. Работа двигателя с детонацией опасна тем, что двигатель перегревается, мощность его падает, а срок службы резко сокращается. Увеличение октанового числа бензина способствует снижению возможности наступления детонации. В качестве присадки, повышающей октановое число, используют антидетонатор – этиловую жидкость Р-9. Бензин с добавлением этиловой жидкости становится этилированным. В состав этиловой жидкости входят собственно антидетонатор – тетраэтилсвинец РЬ(С 2 Н 5)4, выноситель – бромистый этил (ВгС 2 Н 5) и амонохлорнафталин, наполнитель – бензин Б-70, антиокислитель – параоксидифениламин и краситель. При сгорании этилированного бензина выноситель способствует удалению свинца и его оксидов из камеры сгорания, превращая их в парообразное состояние. Они вместе с отработавшими газами выбрасываются в окружающее пространство и оседают вблизи дорог.

В придорожном пространстве примерно 50 % выбросов свинца в виде микрочастиц сразу распределяются на прилегающей поверхности. Остальное количество в течение нескольких часов находится в воздухе в виде аэрозолей, а затем также осаждается на землю вблизи дорог. Накопление свинца в придорожной полосе приводит к загрязнению экосистем и делает близлежащие почвы непригодными к сельскохозяйственному использованию. Добавление к бензину присадки Р-9 делает его высокотоксичным. Разные марки бензина имеют различное процентное содержание присадки. Чтобы различать марки этилированного бензина, их окрашивают, добавляя в присадку разноцветные красители. Неэтилированный бензин поставляется без окрашивания (табл. 3).

Таблица 3.

Некоторые показатели физико-химических свойств автомобильных бензинов по ГОСТ 2084 – 77 и ОСТ 38.01.9 – 75

Показатели качества

Октановое число, не менее:

По моторному методу

По исследовательскому методу

Содержание (масса) свинца, г/кг бензина, не более
Содержание (массовая доля) серы, %, не более
Цвет этилированного бензина

Оранжевый

В развитых странах мира применение этилированного бензина ограничивается или уже полностью прекращено не только по причине высокой токсичности присадки Р-9, но и из-за его несовместимости с каталитическими нейтрализаторами отработавших газов. Достаточно одной заправки этилированным бензином, чтобы вывести из строя активный слой дорогостоящего нейтрализатора и датчика свободного кислорода (Х-зонда), т.е. лишить автомобиль инструментов подавления СО, СН, NO X и стехиометрического дозирования топлива с последующими непредсказуемыми последствиями, вплоть до возгорания автомобиля.

Негативное воздействие на экосистемы оказывают не только рассмотренные компоненты отработавших газов двигателей, выделенные в восемь групп, но и сами углеводородные топлива, масла и смазки. Обладая большой способностью к испарению, особенно при повышении температуры, пары топлив и масел распространяются в воздухе и отрицательно влияют на атмосферный воздух.



План

    Загрязнение атмосферы выбросами транспорта.

    Последствия загрязнения атмосферы.

2.1 Оксид углерода.

2.2 Диоксид серы и серный ангидрид.

2.3 Оксиды азота и некоторые другие вещества.

    Меры по предотвращению загрязнения и охрана атмосферного воздуха.

3.1. Средства защиты атмосферы.

3.2. Эффективность очистки.

3.3. Способы очистки газовых выбросов в атмосферу.

3.4. Охрана атмосферного воздуха.

    Заключение.

1. Загрязнение атмосферы выбросами транспорта.

Большую долю в загрязнении атмосферы составляют выбросы вредных веществ от автомобилей. Сейчас на Земле эксплуатируется около 500 млн. автомобилей, а к 2000 г. ожидается увеличение их числа до 900 млн. В 1997 г. в Москве эксплуатировались 2400 тыс. автомобилей при нормативе 800 тыс. автомобилей на действующие дороги.

В настоящее время на долю автомобильного транспорта приходится больше половины всех вредных выбросов в окружающую среду, которые являются главным источником загрязнения атмосферы, особенно в крупных городах. В среднем при пробеге 15 тыс. км за год каждый автомобиль сжигает 2 т топлива и около 26– 30 т воздуха, в том числе 4,5 т кислорода, что в 50 раз больше потребностей человека. При этом автомобиль выбрасывает в атмосферу (кг/год): угарного газа – 700, диоксида азота – 40, несгоревших углеводородов – 230 и твердых веществ – 2 – 5. Кроме того, выбрасывается много соединений свинца из-за применения в большинстве своем этилированного бензина.

Наблюдения показали, что в домах, расположенных рядом с большой дорогой

(до 10 м), жители болеют раком в 3 – 4 раза чаще, чем в домах, удаленных от дороги на расстояние 50 м. Транспорт отравляет также водоемы, почву и растения.

Токсичными выбросами двигателей внутреннего сгорания (ДВС) являются отработавшие и картерные газы, пары топлива из карбюратора и топливного бака. Основная доля токсичных примесей поступает в атмосферу с отработавшими газами ДВС. С картерными газами и парами топлива в атмосферу поступает приблизительно 45 % углеводородов от их общего выброса.

Количество вредных веществ, поступающих в атмосферу в составе отработавших газов, зависит от общего технического состояния автомобилей и, особенно, от двигателя – источника наибольшего загрязнения. Так, при нарушении регулировки карбюратора выбросы оксида углерода увеличиваются в 4...5 раза. Применение этилированного бензина, имеющего в своем составе соединения свинца, вызывает загрязнение атмосферного воздуха весьма токсичными соединениями свинца. Около 70 % свинца, добавленного к бензину с этиловой жидкостью, попадает в виде соединений в атмосферу с отработавшими газами, из них 30 % оседает на земле сразу за срезом выпускной трубы автомобиля, 40 % остается в атмосфере. Один грузовой автомобиль средней грузоподъемности выделяет 2,5...3 кг свинца в год. Концентрация свинца в воздухе зависит от содержания свинца в бензине.

Исключить поступление высокотоксичных соединений свинца в атмосферу можно заменой этилированного бензина неэтилированным.

Выхлопные газы ГТДУ содержат такие токсичные компоненты, как оксид углерода, оксиды азота, углеводороды, сажу, альдегиды и др. Содержание токсичных составляющих в продуктах сгорания существенно зависит от режима работы двигателя. Высокие концентрации оксида углерода и углеводородов характерны для газотурбинных двигательных установок (ГТДУ) на пониженных режимах (при холостом ходе, рулении, приближении к аэропорту, заходе на посадку), тогда как содержание оксидов азота существенно возрастает при работе на режимах, близких к номинальному (взлете, наборе высоты, полетном режиме).

Суммарный выброс токсичных веществ в атмосферу самолетами с ГТДУ непрерывно растет, что обусловлено повышением расхода топлива до 20...30 т/ч и неуклонным ростом числа эксплуатируемых самолетов. Отмечается влияние

ГТДУ на озоновый слой и накопление углекислого газа в атмосфере.

Наибольшее влияние на условия обитания выбросы ГГДУ оказывают в аэропортах и зонах, примыкающих к испытательным станциям. Сравнительные данные о выбросах вредных веществ в аэропортах подзывают, что поступления от ГТДУ в приземной слой атмосферы составляют, %: оксид углерода – 55, оксиды азота – 77, углеводороды – 93 и аэрозоль – 97. Остальные выбросы выделяют наземные транспортные средства с ДВС.

Загрязнение воздушной среды транспортом с ракетными двигательными установками происходит главным образом при их работе перед стартом, при взлете, при наземных испытаниях в процессе их производства или после ремонта, при хранении и транспортировании топлива. Состав продуктов сгорания при работе таких двигателей определяется составом компонентов топлива, температурой сгорания, процессами диссоциации и рекомбинации молекул. Количество продуктов сгорания зависит от мощности (тяги) двигательных установок. При сгорании твердого топлива из камеры сгорания выбрасываются пары воды, диоксид углерода, хлор, пары соляной кислоты, оксид углерода, оксид азота, а также твердые частицы Аl2O3 со средним размером 0,1 мкм (иногда до 10 мкм).

При старте ракетные двигатели неблагоприятно воздействуют не только на приземной слой атмосферы, но и на космическое пространство, разрушая озоновый слой Земли. Масштабы разрушения озонового слоя определяются числом запусков ракетных систем и интенсивностью полетов сверхзвуковых самолетов.

В связи с развитием авиации и ракетной техники, а также интенсивным использованием авиационных и ракетных двигателей в других отраслях народного хозяйства существенно возрос общий выброс вредных примесей в атмосферу. Однако на долю этих двигателей приходится пока не более 5 % токсичных веществ, поступающих в атмосферу от транспортных средств всех типов.

2. Последствия загрязнения атмосферы.

Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека. Эти вещества попадают в организм человека преимущественно через систему дыхания. Органы дыхания страдают от загрязнения непосредственно, поскольку около 50% частиц примеси радиусом 0,01-0.1 мкм, проникающих в легкие, осаждаются в них.

Проникающие в организм частицы вызывают токсический эффект, поскольку они: а токсичны (ядовиты) по своей химической или физической природе; б) служат помехой для одного или нескольких механизмов, с помощью которых нормально очищается респираторный (дыхательный) тракт; в) служат носителем поглощенного организмом ядовитого вещества.

В некоторых случаях воздействие одни из загрязняющих веществ в комбинации с другими приводят к более серьезным расстройствам здоровья, чем воздействие каждого из них в отдельности. Большую роль играет продолжительность воздействия.

Статистический анализ позволил достаточно надежно установить зависимость между уровнем загрязнения воздуха и такими заболеваниями, как поражение верхних дыхательных путей, сердечная недостаточность, бронхиты, астма, пневмония, эмфизема легких, а также болезни глаз. Резкое повышение концентрации примесей, сохраняющееся в течение нескольких дней, увеличивает смертность людей пожилого возраста от респираторных и сердечно-сосудистых заболеваний. В декабре 1930 г. в долине реки Маас (Бельгия) отмечалось сильное загрязнение воздуха в течение 3 дней; в результате сотни людей заболели, а 60 человек скончались - это более чем в 10 раз выше средней смертности. В январе 1931 г. в районе Манчестера (Великобритания) в течение 9 дней наблюдалось сильное задымление воздуха, которое явилось причиной смерти 592 человек. Широкую известность получили случаи сильного загрязнения атмосферы Лондона, сопровождавшиеся многочисленными смертельными исходами. В 1873 г. в Лондоне было отмечено 268 непредвиденных смертей. Сильное задымление в сочетании с туманом в период с 5 по 8 декабря 1852 г. привело к гибели более 4000 жителей Большого Лондона. В январе 1956 г. около 1000 лондонцев погибли в результате продолжительного задымления. Большая часть тех, кто умер неожиданно, страдали от бронхита, эмфиземы легких или сердечно-сосудистыми заболеваниями.

2.1. Оксид углерода.

Концентрация СО, превышающая предельно допустимую, приводит к физиологическим изменениям в организме человека, а концентрация более 750 млн к смерти. Объясняется это тем, что СО - исключительно агрессивный газ, легко соединяющийся с гемоглобином (красными кровяными тельцами). При соединении образуется карбоксигемоглобин, повышение (сверх нормы, равной 0.4%) содержание которого в крови сопровождается:

а) ухудшением остроты зрения и способности оценивать длительность интервалов времени,

б) нарушением некоторых психомоторных функций головного мозга (при содержании 2-5%),

в) изменениями деятельности сердца и легких (при содержании более 5%),

г) головными болями, сонливостью, спазмами, нарушениями дыхания и смертностью (при содержании 10-80%).

Степень воздействия оксида углерода на организм зависят не только от его концентрации, но и от времени пребывания (экспозиции) человека в загазованном СО воздухе. Так, при концентрации СО равной 10-50 млн (нередко наблюдаемой в атмосфере площадей и улиц больших городов), при экспозиции 50-60 мин отмечаютcя нарушения, приведенные в п. "а", 8-12 ч - 6 недель - наблюдаются изменения, указанные в п.. "в". Нарушение дыхания, спазмы. Потеря сознания наблюдаются при концентрации СО, равной 200 млн, и экспозиции 1-2 ч при тяжелой работе и 3-6 ч - в покое. К счастью, образование карбоксигемоглобина в крови - процесс обратимый: после прекращения вдыхания СО начинается его постепенный вывод из крови; у здорового человека содержание СО в крови каждые 3-4 ч и уменьшается в два раза. Оксид углерода - очень стабильное вещество, время его жизни в атмосфере составляет 2-4 мес. При ежегодном поступлении 350 млн. т концентрация СО в атмосфере должна была бы увеличиваться примерно на 0,03 млн-1/год. Однако этого, к счастью, не наблюдается, чем мы обязаны в основном почвенным грибам, очень активно разлагающим СО (некоторую роль играет также переход СО в СО2).

2.2. Диоксид серы и серный ангидрид.

Диоксид серы (SO2) и серный ангидрид (SO3) в комбинации со взвешенными частицами и влагой оказывают наиболее вредной воздействие на человека, живые организмы и материальные ценности SO2 - бесцветный и негорючий газ, запах которого начинает ощущаться при его концентрации в воздухе 0,3-1,0 млн, а при концентрации свыше 3 млн SO2 имеет острый раздражающий запах. Диоксид серы в смеси с твердыми частицами и серной кислотой (раздражитель более сильный, чем SO2) уже при среднегодовом содержании 9,04-0,09 млн. и концентрации дыма 150-200 мкг/м3 приводит к увеличению симптомов затрудненного дыхания и болезней легких, а при среднесуточном содержании SO2 0,2-0,5 млн и концентрации дыма 500-750 мкг/м3 наблюдается резкое увеличение числа больных и смертельных исходов. При концентрации SO2 0,3-0,5 млн в течение нескольких дней наступает хроническое поражение листьев растений (особенно шпината, салата, хлопка и люцерны), а также иголок сосны.

2.3. Оксиды азота и некоторые другие вещества.

Оксиды азота (прежде всего, ядовиты диоксид азота NO2), соединяющиеся при участии ультрафиолетовой солнечной радиации с углеводородами (среди наибольшей реакционной способностью обладают олеофины), образуют пероксилацетилнитрат (ПАН) и другие фотохимические окислители, в том числе пероксибензоилнитрат (ПБН), озон (О3), перекись водорода (Н 2О2), диоксид азота. Эти окислители- основные составляющие фотохимического смога, повторяемость которого велика в сильно загрязненных городах, расположенных в низких широтах северного и южного полушария (Лос-Анджелес, в котором около 200 дней в году отмечается смог, Чикаго, Нью-Йорк и другие города США; ряд городов Японии, Турции, Франции, Испании, Италии, Африки и Южной Америки).

Оценка скорости фотохимических реакций, приводящих к образованию ПАН, ПБН и озона, показывает, что в ряде южных городов бывшего Советского Союза летом в околополуденные часы (когда велик приток ультрафиолетовой радиации) эти скорости превосходят значения, начиная с которых отмечается образование смога. Так, в Алма-Ате, Ереване, Тбилиси, Ашхабаде, Баку, Одессе и других городах при наблюдаемых уровнях загрязнения воздуха максимальная скорость образования О3 достигла 0,70-0,86 мг/(м3 Чч), в то время как смог возникает уже при скорости 0,35 мг/(м3 Ч ч).

Наличие в составе ПАН диоксида азота и йодистого калия придает смогу коричневый оттенок. При концентрации ПАН выпадает на землю в виде клейкой жидкости губительно действующей на растительный покров.

Все окислители, в первую очередь ПАН и ПБН, сильно раздражают и взывают воспаление глаз, а в комбинации с озоном раздражают носоглотку, приводят к спазмам грудной клетки, а при высокой концентрации (свыше 3-4 мг/м3) вызывают сильный кашель и ослабляют возможность на чем либо сосредоточиться.

Назовем некоторые другие загрязняющие воздух вещества, вредно действующие на человека. Установлено, что у людей, профессионально имеющих дело с асбестом повышена вероятность раковых заболеваний бронхов и диафрагм, разделяющих грудную клетку и брюшную полость. Берилий оказывает вредное воздействие(вплоть до возникновения онкологических заболеваний) на дыхательные пути, а также на кожу и глаза. Пары ртути вызывают нарушение работы центральной верхней системы и почек. Поскольку ртуть может накапливаться в организме человека, то в конечном итоге ее воздействие приводит к расстройству умственных способностей.

В городах вследствие постоянно увеличивающегося загрязнения воздуха неуклонно растет число больных, страдающих такими заболеваниями, как хронический бронхит, эмфизема легких, различные аллергические заболевания и рак легких. В Великобритании 10% случаев смертельных исходов приходится на хронический бронхит, при этом 21; населения в возрасте 40-59 лет страдает этим заболеванием. В Японии в ряде городов до 60% жителей болеют хроническим бронхитом, симптомами которого является сухой кашель с частыми отхаркиваниями, последующее прогрессирующее затруднение дыхания и сердечная недостаточность (в связи с этим следует отметить, что так называемое японское экономическое чудо 50-х - 60-х годов сопровождалось сильным загрязнением природной среды одного из наиболее красивых районов земного шара и серьезным ущербом, причиненным здоровью населения этой страны). В последние десятилетия с вызывающей сильную озабоченность быстротой растет число заболевших раком бронхов и легких, возникновению которых способствуют канцерогенные углеводороды.

3. Меры по предотвращению загрязнения и охрана атмосферного воздуха.

Оценка автомобилей по токсичности выхлопов. Большое значение имеет повседневный контроль над автомашинами. Все автохозяйства обязаны следить за исправностью выпускаемых на линию машин. При хорошо работающем двигателе в выхлопных газах окиси углерода должно содержаться не более допустимой нормы.

Положением о Государственной автомобильной инспекции на нее возложен контроль за выполнением мероприятий по охране окружающей среды от вредного влияния автомототранспорта.

В принятом стандарте на токсичность предусмотрено дальнейшее ужесточение нормы, хотя они и сегодня в России жестче европейских: по окиси углерода-на 35%, по углеводородам-на 12%, по окислам азота-на 21%.

На заводах введены контроль и регулирование автомобилей по токсичности и дымности отработавших газов.

Системы управления городским транспортом. Разработаны новые системы регулирования уличного движения, которые сводят к минимуму возможность образования пробок, потому что, останавливаясь и потом набирая скорость, автомобиль выбрасывает в несколько раз больше вредных веществ, чем при равномерном движении.

Построены автомагистрали в обход городов, которые приняли весь поток транзитного транспорта, который раньше нескончаемой лентой тянулся по городским улицам. Резко снизилась интенсивность движения, уменьшился шум, чище стал воздух.

В Москве создана автоматизированная система управления дорожным движением «Старт». Благодаря совершенным техническим средствам, математическим методам и вычислительной технике она позволяет оптимально управлять движением транспорта во всем городе и полностью освобождает человека от обязанностей непосредственного регулирования автомобильных потоков. «Старт» на 20-25% сократит задержки транспорта у перекрестков, на 8-10% уменьшит количество дорожно-транспортных происшествий, улучшит санитарное состояние городского воздуха, увеличит скорость сообщения общественного транспорта, снизит уровень шумов.

Перевод автотранспорта на дизельные двигатели. По мнению специалистов, перевод автотранспорта на дизельные двигатели уменьшит выброс в атмосферу вредных веществ. В выхлопе дизеля почти не содержится ядовитой окиси углерода, так как дизельное топливо сжигается в нем практически полностью.

К тому же дизельное топливо свободно от тетраэтила свинца, присадки, которая используется для повышения октанового числа бензина, сжигаемого в современных карбюраторных двигателях с высокой степенью сжигания.

Дизель экономичнее карбюраторного двигателя на 20-30%. Более того, для производства 1 л дизельного топлива требуется в 2,5 раза меньше энергии, чем для производства того же количества бензина. Получается, таким образом, как бы двойная экономия энергоресурсов. Именно этим объясняется быстрый рост числа автомобилей, работающих на дизельном топливе.

Совершенствование двигателей внутреннего сгорания. Создание автомобилей с учетом требований экологии-одна из серьезных задач, которые стоят сегодня перед конструкторами.

Совершенствование процесса сгорания топлива в двигателе внутреннего сгорания, применение электронной системы зажигания приводит к уменьшению в выхлопе вредных веществ.

Нейтрализаторы. Большое внимание придается разработке устройства снижения токсичности-нейтрализаторов, которыми можно оснастить современные автомобили.

Способ каталитического преобразования продуктов сгорания заключается в том, что отработавшие газы очищаются, вступая в контакт с катализатором.

Одновременно происходит дожигание продуктов неполного сгорания, содержащихся в выхлопе автомобилей.

Нейтрализатор крепят к выхлопной трубе, и газы, прошедшие через него, выбрасываются в атмосферу очищенными. Одновременно устройство может выполнять функции глушителя шума. Эффект от использования нейтрализаторов достигается внушительный: при оптимальном режиме выброс в атмосферу оксида углерода уменьшается на 70-80%, а углеводородов-на 50-70%.

Значительно улучшить состав выхлопных газов можно с помощью различных добавок к топливу. Ученые разработали присадку, которая снижает содержание сажи в выхлопных газах на 60-90% и канцерогенных веществ-на 40%.

В последнее время на нефтеперерабатывающих предприятиях страны широко внедряется процесс каталитического риформинга низкооктановых бензинов. В результате можно выпускать неэтилированные, малотоксичные бензины.

Использование их снижает загрязненность атмосферного воздуха, увеличивает срок службы автомобильных двигателей, сокращает расход топлива.

Газ вместо бензина. Высокооктановое, стабильное по составу газовое топливо хорошо смешивается с воздухом и равномерно распределяется по цилиндрам двигателя, способствуя более полному сгоранию рабочей смеси.

Суммарный выброс токсичных веществ у автомобилей, работающих на сжиженном газе, значительно меньше, чем у машин с бензиновыми двигателями. Так, грузовик «ЗИЛ-130», переведенный на газ, имеет показатель по токсичности почти в 4 раза меньше, чем его бензиновый собрат.

При работе двигателя на газе происходит более полное сгорание смеси. А это ведет к снижению токсичности отработавших газов, уменьшению нагарообразования и расхода масла, увеличению моторесурса. Кроме того, сжиженный газ дешевле бензина.

Электромобиль. В настоящее время, когда автомобиль с бензиновым двигателем стал одним из существенных факторов, приводящих к загрязнению окружающей среды, специалисты все чаще обращаются к идее создания «чистого» автомобиля. Речь, как правило, идет об электроавтомобиле.

В настоящее время в нашей стране производятся электромобили пяти марок.

Электромобиль Ульяновского автозавода («УАЗ»-451-МИ) отличается от остальных моделей системой электродвижения на переменном токе и встроенным зарядным устройством. В интересах защиты окружающей среды считается целесообразным перевод автотранспорта на электротягу, особенно в крупных городах.

3.1. Средства защиты атмосферы.

Контроль загрязнения атмосферы на территории России осуществляется почти в 350 городах. Система наблюдения включает 1200 станций и охватывает почти все города с населением более 100 тыс. жителей и города с крупными промышленными предприятиями.

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Во всех случаях должно соблюдаться условие:

С+сф (ПДК (1) по каждому вредному веществу (сф – фоновая концентрация).

Соблюдение этого требования достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

– вывод токсичных веществ из помещений общеобменной вентиляцией;

– локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху;

– локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере;

– очистка технологических газовых выбросов в специальных аппаратах, выброс и рассеивание в атмосфере; в ряде случаев перед выбросом отходящие газы разбавляют атмосферным воздухом;

– очистка отработавших газов энергоустановок, например, двигателей внутреннего сгорания в специальных агрегатах, и выброс в атмосферу или производственную зону (рудники, карьеры, складские помещения и т. п.)

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на: пылеуловители (сухие, электрические, фильтры, мокрые); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители). Их работа характеризуется рядом параметров. Основными из них являются активность очистки, гидравлическое сопротивление и потребляемая мощность.

3.2. Эффективность очистки.

Широкое применение для очистки газов от частиц получили сухие пылеуловители – циклоны различных типов.

Электрическая очистка (электрофильтры) – один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Для этого применяют электрофильтры.

Для высокоэффективной очистки выбросов необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки.

Такие решения находят применение при высокоэффективной очистке газов от твердых примесей; при одновременной очистке от твердых и газообразных примесей; при очистке от твердых примесей и капельной жидкости и т. п.

Многоступенчатую очистку широко применяют в системах очистки воздуха с его последующим возвратом в помещение.

3.3. Способы очистки газовых выбросов в атмосферу.

Абсорбционный способ очистки газов, осуществляемый в установках- абсорберах, наиболее прост и дает высокую степень очистки, однако требует громоздкого оборудования и очистки поглощающей жидкости. Основан на химических реакциях между газом, например, сернистым ангидридом, и поглощающей суспензией (щелочной раствор: известняк, аммиак, известь). При этом способе на поверхность твердого пористого тела (адсорбента) осаждаются газообразные вредные примеси. Последние могут быть извлечены с помощью десорбции при нагревании водяным паром.

Способ окисления горючих углеродистых вредных веществ в воздухе заключается в сжигании в пламени и образовании СО2 и воды, способ термического окисления – в подогреве и подаче в огневую горелку.

Каталитическое окисление с использованием твердых катализаторов заключается в том, что сернистый ангидрид проходит через катализатор в виде марганцевых составов или серной кислоты.

Для очистки газов методом катализа с использованием реакций восстановления и разложения применяют восстановители (водород, аммиак, углеводороды, монооксид углерода). Нейтрализация оксидов азота NOx достигается применением метана с последующим использованием оксида алюминия для нейтрализации на втором этапе образующегося монооксида углерода.

Перспективен сорбционно-каталитический способ очистки особо токсичных веществ при температурах ниже температуры катализа.

Адсорбционно-окислительный способ также представляется перспективным.

Он заключается в физической адсорбции малых количеств вредных компонентов с последующим выдуванием адсорбированного вещества специальным потоком газа в реактор термокаталитического или термического дожигания.

В крупных городах для снижения вредного влияния загрязнения воздуха на человека применяют специальные градостроительные мероприятия: зональную застройку жилых массивов, когда близко к дороге располагают низкие здания, затем – высокие и под их защитой – детские и лечебные учреждения; транспортные развязки без пересечений, озеленение.

3.4. Охрана атмосферного воздуха.

Атмосферный воздух является одним из основных жизненно важных элементов окружающей среды.

Закон «О6 охране атмосферного воздуха» всесторонне охватывает проблему.

Он обобщил требования, выработанные в предшествующие годы и оправдавшие себя на практике. Например, введение правил о запрещении ввода в действие любых производственных объектов (вновь созданных или реконструированных), если они в процессе эксплуатации станут источниками загрязнений или иных отрицательных воздействий на атмосферный воздух. Получили дальнейшее развитие правила о нормировании предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе.

Государственным санитарным законодательством только для атмосферного воздуха были установлены ПДК для большинства химических веществ при изолированном действии и для их комбинаций.

Гигиенические нормативы – это государственное требование к руководителям предприятий. За их выполнением должны следить органы государственного санитарного надзора Министерства здравоохранения и

Государственный комитет по экологии.

Большое значение для санитарной охраны атмосферного воздуха имеет выявление новых источников загрязнения воздушной среды, учет проектируемых, строящихся и реконструируемых объектов, загрязняющих атмосферу, контроль за разработкой и реализацией генеральных планов городов, поселков и промышленных узлов в части размещения промышленных предприятий и санитарно- защитных зон.

В Законе «Об охране атмосферного воздуха» предусматриваются требования об установлении нормативов предельно допустимых выбросов загрязняющих веществ в атмосферу. Такие нормативы устанавливаются для каждого стационарного источника загрязнения, для каждой модели транспортных и других передвижных средств и установок. Они определяются с таким расчетом, чтобы совокупные вредные выбросы от всех источников загрязнения в данной местности не превышали нормативов ПДК загрязняющих веществ в воздухе.

Предельно допустимые выбросы устанавливаются только с учетом предельно допустимых концентраций.

Очень важны требования Закона, относящиеся к применению средств защиты растений, минеральных удобрений и других препаратов. Все законодательные меры составляют систему профилактического характера, направленную на предупреждение загрязнения воздушного бассейна.

Закон предусматривает не только контроль за выполнением его требований, но и ответственность за их нарушение. Специальная статья определяет роль общественных организаций и граждан в осуществлении мероприятий по охране воздушной среды, обязывает их активно содействовать государственным органам в этих вопросах, так как только широкое участие общественности позволит реализовать положения этого закона. Так, в нем сказано, что государство придает большое значение сохранению благоприятного состояния атмосферного воздуха, его восстановлению и улучшению для обеспечения наилучших условий жизни людей – их труда, быта, отдыха и охраны здоровья.

Предприятия или их отдельные здания и сооружения, технологические процессы которых являются источником выделения в атмосферный воздух вредных и неприятно пахнущих веществ, отделяют от жилой застройки санитарно- защитными зонами. Санитарно-защитная зона для предприятий и объектов может быть увеличена при необходимости и надлежащем обосновании не более чем в 3 раза в зависимости от следующих причин: а) эффективности предусмотренных или возможных для осуществления методов очистки выбросов в атмосферу; б) отсутствия способов очистки выбросов; в) размещения жилой застройки при необходимости с подветренной стороны по отношению к предприятию в зоне возможного загрязнения атмосферы; г) розы ветров и других неблагоприятных местных условий (например, частые штили и туманы); д) строительства новых, еще недостаточно изученных вредных в санитарном отношении производств.

Размеры санитарно-защитных зон для отдельных групп или комплексов крупных предприятий химической, нефтеперерабатывающей, металлургической, машиностроительной и других отраслей промышленности, а также тепловых электрических станций с выбросами, создающими большие концентрации различных вредных веществ в атмосферном воздухе и оказывающими особо неблагоприятное влияние на здоровье и санитарно-гигиенические условия жизни населения, устанавливают в каждом конкретном случае по совместному решению

Минздрава и Госстроя России.

Для повышения эффективности санитарно-защитных зон на их территории высаживают древесно-кустарниковую и травянистую растительность, снижающую концентрацию промышленной пыли и газов. В санитарно-защитных зонах предприятий, интенсивно загрязняющих атмосферный воздух вредными для растительности газами, следует выращивать наиболее газоустойчивые деревья, кустарники и травы с учетом степени агрессивности и концентрации промышленных выбросов. Особо вредны для растительности выбросы предприятий химической промышленности (сернистый и серный ангидрид, сероводород, серная, азотная, фтористая и бромистая кислоты, хлор, фтор, аммиак и др.), черной и цветной металлургии, угольной и теплоэнергетической промышленности.

4. Заключение.

Оценка и прогноз химического состояния приземной атмосферы, связанного с природными процессами ее загрязнения, существенно отличается от оценки и прогноза качества этой природной среды, обусловленного антропогенными процессами. Вулканической и флюидной активностью Земли, другими природными феноменами нельзя управлять. Речь может идти только о минимизации последствий негативного воздействия, которое возможно лишь в случае глубокого понимания особенностей функционирования природных систем разного иерархического уровня, и, прежде всего, Земли как планеты. Необходим учет взаимодействия многочисленных факторов, изменчивых во времени и пространстве, К главным факторам относятся не только внутренняя активность

Земли, но и ее связи с Солнцем, космосом. Поэтому мышление «простыми образами» при оценке и прогнозе состояния приземной атмосферы недопустимо и опасно.

Антропогенные процессы загрязнения воздушного бассейна в большинстве случаев поддаются управлению.

Экологическая практика в России и за рубежом показала, что ее неудачи связаны с неполным учетом негативных воздействий, неумением выбрать и оценить главные факторы и последствия, низкой эффективностью использования результатов натурных и теоретических экологических исследований при принятии решений, недостаточной разработанностью методов количественной оценки последствий загрязнения приземной атмосферы и других жизнеобеспечивающих природных сред.

Во всех развитых странах приняты законы об охране атмосферного воздуха.

Они периодически пересматриваются с учетом новых требований к качеству воздуха и поступления новых данных о токсичности и поведении загрязняющих веществ в воздушном бассейне. В США сейчас обсуждается уже четвертый вариант закона о чистом воздухе. Борьба идет между сторонниками охраны окружающей среды и компаниями, экономически не заинтересованными в повышении качества воздуха. Г1равительством Российской Федерации разработан проект закона об охране атмосферного воздуха, который в настоящее время обсуждается. Улучшение качества воздуха на территории России имеет важное социально-экономическое значение.

Это обусловлено многими причинами, и, прежде всего, неблагополучным состоянием воздушного бассейна мегаполисов, крупных городов и промышленных центров, в которых проживает основная часть квалифицированного и трудоспособного населения.

Легко сформулировать формулу качества жизни в столь затяжной экологический кризис: гигиенически чистый воздух, чистая вода, качественная сельскохозяйственная продукция, рекреационная обеспеченность потребностей населения. Сложнее это качество жизни реализовать при наличии экономического кризиса, ограниченных финансовых ресурсов. В такой постановке вопроса необходимы исследования и практические мероприятия, составляющие основу «экологизации» общественного производства.

Экологическая стратегия, прежде всего, предполагает разумную экологически обоснованную технологическую и техническую политику. Эту политику можно сформулировать коротко: производить больше с меньшими затратами, т.е. сберегать ресурсы, использовать их с наибольшим эффектом, совершенствовать и быстро менять технологии, внедрять и расширять рециклинг. Иными словами, должна быть обеспечена стратегия превентивных экологических мер, заключающаяся во внедрении самых совершенных технологий при структурной перестройке хозяйства, обеспечивающих энерго- и ресурсосбережение, открывающая возможности совершенствования и быстрой смены технологий, внедрение рециклинга и минимизацию отходов. Концентрация усилий при этом должна быть направлена на развитие производства потребительских товаров и увеличение доли потребления. В целом хозяйство

России должно максимально сократить энерго- и ресурсоемкость валового национального продукта и потребление энергии и ресурсов в расчете на одного жителя. Сама рыночная система и конкуренция должны способствовать реализации этой стратегии.

Охрана природы - задача нашего века, проблема, ставшая социальной.

Снова и снова мы слышим об опасности, грозящей окружающей среде, но до сих пор многие из нас считают их неприятным, но неизбежным порождением цивилизации и полагают, что мы еще успеем справиться со всеми выявившимися затруднениями. Однако воздействие человека на окружающую среду приняло угрожающие масштабы. Чтобы в корне улучшить положение, понадобятся целенаправленные и продуманные действия. Ответственная и действенная политика по отношению к окружающей среде будет возможна лишь в том случае, если мы накопим надёжные данные о современном состоянии среды, обоснованные знания о взаимодействии важных экологических факторов, если разработает новые методы уменьшения и предотвращения вреда, наносимого Природе

Человеком.

Уже наступает время, когда мир может задохнуться, если не придет на помощь Природе Человек. Только Человек владеет экологическим талантом – содержать окружающий мир в чистоте.

Список использованной литературы:

1. Данилов-Данильян В.И. «Экология, охрана природы и экологическая безопасность» М.: МНЭПУ, 1997 г.

2. Протасов В.Ф. «Экология, здоровье и охрана окружающей среды в России»,

М.: Финансы и статистика, 1999 г.

3. Белов С.В. «Безопасность жизнедеятельности» М.: Высшая школа, 1999 г.

4. Данилов-Данильян В.И. «Экологические проблемы: что происходит, кто виноват и что делать?» М.: МНЭПУ, 1997 г.

5. Козлов А.И., Вершубская Г.Г. «Медицинская антропология коренного населения Севера России» М.: МНЭПУ, 1999 г.

Во многих городах мира концентрации вредных веществ в воздухе, создаваемые выбросами автотранспорта, превышают стандарты качества атмосферного воздуха.

Во многих городах нашей страны уровень загрязнения воздуха превышает нормативы предельно допустимых концентраций. В связи с этим проблема снижения негативного воздействия автотранспорта на здоровье людей, воздушный и водный бассейны, растительный и животный мир, почвы весьма актуальна.

Уровень загрязнения воздуха вредными примесями зависит не только от количества выбросов вредных веществ, но и в большей степени от условий рассеивания примесей в атмосфере. При определенных метеорологических условиях концентрации примесей в воздухе увеличиваются и могут достигать опасных значений.

Кратковременное сокращение выбросов в периоды увеличения загрязнения воздуха может существенно улучшить состояние воздушного бассейна. Вопросы регулирования выбросов и прогноза загрязнения атмосферы тесно связаны между собой.

Существующий уровень техники в нашей стране не позволяет обеспечить нужную очистку выбросов, поэтому, естественно, возникает вопрос о возможности уменьшения выбросов хотя бы в сравнительно короткие периоды времени, когда образуется неблагоприятная метеорологическая обстановка, при которой может создаваться опасное загрязнение воздуха. Разработка краткосрочного прогноза загрязнения воздуха в настоящее время является актуальной задачей.

Полное решение проблемы уменьшения загрязнения воздуха автотранспортом зависит, в первую очередь, от технических мероприятий, касающихся повышения экологичности каждого автомобиля и уменьшения токсичности автомобильных выбросов. Это - долгосрочная программа, требующая больших материальных затрат и времени. Определить целесообразность и достаточность тех или иных технических и организационных мероприятий по снижению выбросов автотранспорта позволяет долгосрочный прогноз загрязнения воздуха с учетом информации о существующих уровнях загрязнения воздуха в городах и мероприятий по снижению выбросов автотранспорта .

Современное состояние загрязнения воздуха автотранспортом и мероприятия по снижению выбросов в различных странах.

Прежде чем перейти к вопросам определения неблагоприятных метеорологических условий для выбросов автотранспорта и разработке схем прогноза загрязнения воздуха, целесообразно провести анализ современного состояния загрязнения воздуха автотранспортом в городах России и за рубежом, а также состава автомобильных выбросов. Легковой автомобиль стал одним из необходимых атрибутов повседневной жизни людей в развитых странах. В 90-е годы в мире насчитывалось свыше 600 млн, автомобилей, по прогнозам к 2010 г. их число может достигнуть 1 млрд. Более 1/3 автомобильного парка сосредоточено в Западной Европе и Северной Америке. При росте населения за последние годы в 4-х развитых странах - Германии, Швейцарии, США и Франции в 2 раза парк автомобилей возрос в 4 раза. Доля городских передвижений на общественном транспорте для большинства городов составляет 15 - 20%. В западноевропейских странах на 1000 жителей приходится в среднем 322 легковых автомобиля, в США - 540, Венгрии -168. В 2000 г. японский автомобильный парк насчитывал 58 млн. автомобилей (т.е. 1 автомобиль на 2 человека). В развивающихся странах владение легковыми автомобилями на душу населения значительно отстает от развитых стран (в 1985 г. оно составило 5%). Однако следует отметить в последние годы рост автомобильного парка бывших соц.стран и развивающихся стран за счет импорта устаревших автомобилей с «грязными» двигателями.

Так, автопарк личного транспорта Москвы в 2008 г. составил 850 тыс. единиц. Отмечается также, что ежедневно через Москву проезжает 120 тыс. иногородних автомобилей.

В общем валовом выбросе вредных веществ в атмосферу в странах ЕЭС на долю автотранспорта приходится до 70% выбросов оксида углерода, до 50% выбросов оксидов азота (во Франции и ФРГ до 60 - 70%) и до 45% выбросов углеводородов. Почти 90% выбросов свинца падает на долю автотранспорта в странах ЕЭС. В ФРГ выброс свинца составляет 3 тыс. тонн в год. В ФРГ на долю выбросов автотранспорта приходится 59,2% оксида углерода, 57,3% оксидов азота, 76,8% углеводородов, 10,7% пыли и 3,6% диоксида серы от валовых выбросов в атмосферу всеми видами транспортных средств.

В Италии вклад автотранспорта в загрязнение атмосферы также преобладает и составляет: по оксидам азота - 61,4%, оксиду углерода - 90т9% углеводородам - 76,9%.

В Российской Федерации по данным ежегодных обзоров в 2005 г. выбросы автотранспорта составили 62% от суммарных выбросов вредных веществ (67% по оксиду углерода, 32% по диоксиду азота, 34% по углеводородам) .

Преобладание выбросов автотранспорта является особенностью крупных городов, где проживает большинство населения. В таблице 1.1 показан вклад выбросов автотранспорта оксида углерода, углеводородов и диоксида азота от суммарных выбросов каждого вещества для некоторых крупных городов мира.

Во многих городах мира концентрации диоксида азота и оксида углерода, основных веществ присутствующих в выбросах автотранспорта, превышают стандарты качества атмосферного воздуха. Для сравнения уровней загрязнения воздуха в городах бывшего СССР и других стран на рис.1.1 и 1.2 приведены средние концентрации оксида углерода и диоксида азота. В-Сантьяго, Париже загрязнение воздуха оксидом углерода было выше, чем в Санкт-Петербурге, Москве, Тбилиси. Наиболее высокие уровни среднегодовых концентраций диоксида азота характерны для Москвы, Одессы, Алматы. Максимальные разовые концентрации, которые отмечались во многих городах мира на крупных автомагистралях в часы "пик" в 10 - 15 раз превышают среднегодовые концентрации.

По данным ежегодных обзоров о выбросах вредных веществ во многих городах России выбросы автотранспорта преобладают над выбросами от промышленных источников причем, в 12 городах выбросы автотранспорта превышают 100 тыс.т./год. Наибольшие выбросы от автотранспорта в 2005 г. были отмечены в городах Москве, Тюмени, Перми, Хабаровске и др. В таблице 1.2 приводятся города с выбросами автотранспорта выше 100 тыс.т./год и вкладом автотранспорта более 50% в валовые выбросы.

Повышенное загрязнение воздуха выбросами автотранспорта характерно для городов, как зарубежных, так и России, причем уровни содержания токсичных веществ в городском воздухе соизмеримы. Основными причинами такой соизмеримости (при значительно меньшем автопарке в нашей стране) являются крайне низкое техническое состояние наших автомобилей и некачественное топливо.

В настоящее время отсутствуют точные количественные оценки ущерба, наносимого выбросами автотранспорта окружающей среде и народному хозяйству, однако значительная доля ущерба (до 80%) связывается с заболеваниями населения. По данным американских ученых, при эпидемиях гриппа количество заболеваний в городах с повышенным уровнем загрязнения диоксидом азота и оксидом углерода в 10 раз больше, чем в городах, где экологическая обстановка благополучная.

Значительный ущерб здоровью людей наносят выбросы свинца и его соединений, содержащихся в автомобильном топливе.

Исследования, проведенные в городах Японии и Каире, показали, что концентрации свинца в крови дорожных полицейских и водителей были в 2 - 2,5 раза выше, чем у сельских жителей. Уровни свинца не коррелируют с возрастом, сроком службы. Говорится о том, что такие уровни свинца в крови у дорожных полицейских могут рассматриваться, как приемлемые для данной профессии.

Выбросы от автотранспорта являются одной из причин повреждения и гибели лесов в некоторых странах Европы. В целом в Альпах вследствие загрязнения воздушного бассейна повреждено более 80% лесов.

Наиболее широкие исследования ведутся по оценке негативного воздействия свинца, обладающего способностью накапливаться в растениях, в том числе и сельскохозяйственных культурах.

Установлено, что уровень содержания свинца в растениях превышает ПДК уже при интенсивности движения транспорта свыше 2500 -3000 машин в сутки. По оценкам немецких специалистов, ежегодный ущерб окружающей среде, обусловленный задержками транспорта на перекрестках {когда происходит наибольшее выделение выхлопных газов) в городах ФРГ составляет около 150 млрд.марок. Для 39 городов США в 2000 г. эти издержки оценены в 41 млн.долларов, в для Лондона в 10 млн. ф.ст. .

Поэтому во всем мире на первый план вынесена проблема снижения негативного воздействия автотранспорта на здоровье людей, воздушный и водный бассейны, растительный и животный мир.

Для этого, прежде всего, необходимо выяснить какие вредные вещества присутствуют в выхлопных газах автомобилей и в каком количестве.

Состав отработавших газов (ОГ) зависит от типа автомобиля и потребляемого топлива. В зависимости от структуры автомобильного парка меняется структура вклада выбросов автотранспорта в загрязнение атмосферы в разных странах. В общем парке транспортных средств Западной Европы и Северной Америки большую часть составляют легковые автомобили. В Восточной Европе преобладает грузовой транспорт. Грузовой автопарк в большинстве стран состоит из дизельных и автомобилей. В странах Восточной Европы (в том числе и нашей) довольно велико количество автомобилей, работающих на бензине, то же можно сказать про США.

Парк легковых автомобилей оснащен в основном двигателями с искровым зажиганием, работающими на бензине. В некоторых странах создано относительно большое количество автомобилей работающих на газе. В России в последнее время наблюдается тенденция перевода легкового и грузового транспорта на газовое топливо. В Западной Европе нашли большое применение легковые автомобили с дизельными двигателями, и их популярность растет.

Принцип работы двигателей внутреннего сгорания карбюраторных и дизельных - различный, поэтому составы отработавших газов также различны.

Для сравнения приведены данные для карбюраторного двигателя с использованием и без использования катализатора. Дизельные двигатели принято считать более экологичными. Однако, дизельные двигатели отличаются повышенными выбросами сажи, образующейся вследствие перегрузки и плохой регулировки двигателей и системы подачи топлива. Сажа насыщена канцерогенными углеводородами и микроэлементами, которые очень вредны для здоровья человека.

К основным загрязняющим компонентам в отработавших газах (ОГ) автомобилей относятся: оксид углерода (СО), углеводороды (СХНУ), оксиды азота (NOX) и сажевый аэрозоль.

Выброс малых составляющих от автомобилей, работающих на бензине, превосходит выброс от автомобилей, работающих на дизельном топливе. Исключение составляет выброс диоксида серы.

Для автомобилей, работающих на этилированных сортах бензина, характерно присутствие в ОГ соединений свинца.

30 мая 1984 г. было юридически закреплено решение ЕЭК ООН, по которому все новые модели автомобилей должны эксплуатироваться с 1986 г. на бензинах без свинца .

Информация об удельных выбросах единичного автомобиля с различными типами двигателей необходима для разработки мероприятий по снижению выбросов, тех либо иных веществ. Если в городе или в районе магистралей наблюдается повышенное содержание сажи в воздухе, мероприятия по снижению выбросов должны, в первую очередь, касаться дизельных автомобилей. Оснащение бензиновых двигателей катализаторами значительно уменьшает пробеговый выброс углеводородов и оксидов азота. Следовательно, в городах с большими уровнями загрязнения воздуха этими веществами, как одну из мер снижения выбросов автотранспорта, можно предложить - оснащение катализаторами карбюраторных автомобилей.

Надо отметить, что в зависимости от режима работы двигателя и температуры окружающей среды концентрации загрязняющих веществ в отработавших газах меняются.

Известно, что в городских условиях двигатель автомобиля не может работать на каком-то одном режиме. Учет количественных различий в содержании токсических компонент в выхлопных газах при различных режимах работы автомобильных двигателей имеет особое значение при эксплуатации автомобилей в городе.

Уменьшению загрязнения воздуха выбросами автотранспорта способствует правильная организация движения транспорта на улицах городов. Например, при безостановочном проезде («зеленая волна», развязка на разных уровнях) выбросы оксида углерода и углеводородов на перекрестках снижаются в несколько раз.

Наибольшее количество выбросов оксида углерода и углеводородов поступает в атмосферу при малых скоростях движения автомобиля. При достижении скорости 40 км/час выбросы углеводородов практически не меняются. Выбросы оксида углерода постепенно понижаются с увеличением скорости движения. Минимальное количество окислов азота автомобиль выбрасывает при скорости 60 - 70 км/час.

Наименьшее количество оксида углерода, углеводородов и окислов азота выбрасывается автомобилями при температуре окружающей среды 20°С. С увеличением температуры усиливаются процессы испарения топлива, что приводит к увеличению концентрации вредных веществ в ОГ автомобиля. При уменьшении температуры окружающей среды увеличивается время прогрева двигателя, что приводит к увеличению концентраций вредных веществ в ОГ автомобиля.

Количество автомобилей год от года растет, следовательно для уменьшения выбросов всего парка автомобилей следует уменьшить выбросы каждого автомобиля. Снижение выбросов от автотранспорта обусловлено, в первую очередь, улучшением конструкции двигателей и ужесточением допустимых норм содержания вредных веществ в ОГ. Появилась тенденция уменьшения пороговых выбросов для парка автомобилей США с 1970 г. и в перспективе до 2020 г.

В западных странах с развитым автомобилестроением накоплен определенный опыт решения проблем, связанных с уменьшением загрязнения атмосферного воздуха, рисунок 1 .

Рисунок 1. Блок-схема модели оценки загрязнения воздушной среды ТП

Все мероприятия можно разделить на 3 основные группы. Мероприятия первой группы касаются технических вопросов развития автомобилестроения в стране:

  • - совершенствование существующих двигателей (улучшение системы зажигания, в том числе оснащение бесконтактными системами зажигания);
  • - изменение процессов подачи топлива в цилиндры двигателей, в том числе применение электронного впрыскивания топлива;
  • - обеспечение рециркуляции отработавших газов, а также установка микропроцессорных систем управления двигателями.
  • Методики расчета выбросов загрязняющих веществ в атмосферный воздух при проведении различных технологических процессов (Документ)
  • Охрана окружающей среды (Документ)
  • Буренин Н.С., Волкодаева М.В., Губанов А.Ф. и др. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Документ)
  • Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования для предприятий радиоэлектронного комплекс (Документ)
  • Тищенко Н.Ф. Охрана атмосферного воздуха. Расчет содержания вредных веществ и их распределение в воздухе (Документ)
  • Расчет выбросов вредных веществ в атмосферу и разработка ПДВ в вагонном депо Ростов (Документ)
  • Загрязнения автомобильным транспортом (Документ)
  • n1.doc

    Федеральное агентство железнодорожного транспорта

    Уральский государственный университет

    Путей сообщения

    Кафедра ИЗОС

    Практическая работа

    По экологии


    Екатеринбург

    В условиях интенсивной антропогенной нагрузки экологическая безо­пасность окружающей среды представляется актуальнейшей проблемой, весьма далёкой от разрешения. Всё отчётливее проявляются последствия ур­банизации, о чём указывается в Экологической доктрине Российской Феде­рации. Существенной особенностью загрязнения воздушной среды городов являются выхлопные газы автотранспорта. В ряде городов России, особенно в крупных административных и промышленных центрах, выхлопные газы автомобильного транспорта составляют 60-80% общих выбросов.

    Автомобильные двигатели загрязняют атмосферу вредными вещества­ми, которые представляют собой сложную смесь из более чем двухсот ком­понентов, среди которых немало канцерогенных. Основные виды выбросов загрязняющих веществ от мобильных источников приведены в табл 1.
    Таблица 1-Основные виды выбросов загрязняющих веществ от мобильных источников


    Тип двигателя

    Топливо

    Основные виды загрязнений

    Примеры

    Четырёхтактный двигатель внутреннего сгора­ния

    Бензин

    Углеводороды, оксид углерода, оксиды азо­та, свинец

    Автомобили, автобусы, само­лёты, мотоцик­лы

    Двухтактный дви­гатель внутреннего сгорания

    Бензин
    (с добавлени­ем масла)

    Углеводороды, оксид углерода, оксид азота, твёрдые вещества (са­жа)

    Мотоциклы, вспомогатель­ные моторы

    Дизель

    Лигроин

    Оксиды азота, твёрдые вещества (сажа)

    Автобусы, трак­торы, поезда

    По своему воздействию на организм человека вещества, содержащиеся в отработанных газах, подразделяются на несколько групп.

    В группу нетоксичных веществ входят азот, кислород, водяной пар, а также углекислый газ.

    Группу токсичных веществ составляют окись углерода СО, оксиды азота, многочисленная группа углеводородов, включающая парафины, аро­матические соединения и т.д. Окись углерода поражает нервную систему че­ловека, нарушает сердечную деятельность, препятствует кислородному об­мену в крови. Углеводороды способствуют развитию раковых заболеваний.

    Следующую группу образуют неорганические газы - оксиды серы и сероводород и сажа. Например, длительное воздействие сажи может прово­цировать болезни органов дыхания, центральной нервной и иммунной сис­тем.

    Особую группу составляют полициклические ароматические углеводо­роды (ПАУ), в том числе активный - бенз(а)пирен, являющийся сильным канцерогеном. Именно с бенз(а)пиреном связывают дополнительный риск возникновения онкологических заболеваний.

    В случае присутствия этилированного бензина образуются токсичные соединения свинца. Свинец поражает нервную систему человека и костную ткань.

    Состав отработанных газов основных типов двигателей - бензинового двигателя с электрическим зажиганием и дизеля - существенно отличается, прежде всего по концентрации продуктов неполного сгорания, а именно ок­сида углерода, углеводородов и сажи. В табл 2 показаны выбросы вред­ных веществ карбюраторного и дизельного двигателей (% к общему объёму выбросов).

    Таблица 2-Выбросы вредных веществ карбюраторного и дизельного двигателей


    Вещество

    Карбюраторный двигатель

    Дизельный двигатель

    Оксид углерода

    0,5-12,0

    0,01-0,5

    Оксид азота

    0,005-0,8

    0,002-0,5

    Углеводороды

    0,2-0,3

    0,009-0,5

    Бенз(а)пирен

    До 20 мкг/куб. м

    До 10 мкг/куб.м

    Как видно из таблицы выбросы основных загрязняющих веществ зна­чительно ниже в дизельных двигателях. Поэтому принято считать их более экологически чистыми. Наиболее полно положительные качества дизеля проявляются в режиме городского движения с большим процентом малых нагрузок и холостого хода. Однако дизельные двигатели отличаются повы­шенными выбросами сажи, которая насыщена канцерогенными углеводоро­дами и микроэлементами.

    Наиболее объёмным компонентом автомобильных выбросов является оксид углерода, на него приходится до 80% выбросов от легковых автомоби­лей и до 87% выбросов от грузового транспорта. Ко вторым по массе загряз­нителям атмосферы от автотранспорта относятся углеводороды (14% от лег­кового и до 8% от грузового транспорта). Оксидами азота в большей степени насыщены выхлопы автобусов и легкового транспорта (до 8%). Оксид угле­рода, оксиды азота и углеводороды, как обладающие наибольшей токсично­стью, являются основными нормирующими компонентами выхлопных газов автомобилей.

    Наибольшее количество токсичных веществ выбрасывается автомоби­лями в воздух на малом ходу, на перекрёстках, остановках перед светофора­ми.
    В табл 3 приведены значения концентрации основных примесей кар­бюраторного двигателя при различных режимах его работы.
    Таблица 3 - Концентрации основных примесей карбюраторного двигателя при различных режимах его работы


    Режим работы двигателя

    Оксид угле­рода, % по объёму

    Углеводороды,

    Мг/л


    Оксиды азо­та,

    Мг/л


    Холостой ход

    4-12

    2-6

    -

    Принудительный холостой ход

    2-4

    8-12

    -

    Средние нагрузки

    0-1

    0,8-1,5

    2,5-4,0

    Полные нагрузки

    2

    0,7-0,8

    4-8

    Подсчитано, что среднегодовой пробег каждого автомобиля 15 тысяч километров. В среднем за это время он обедняет атмосферу на 4350 кг кисло­рода и обогащает её на 3250 кг углекислого газа, 530 кг окиси углерода, 93 кг углеводородов и 7 кг окислов азота.

    Количество выбросов вредных веществ, поступающих от автотранс­порта, может быть оценено расчётным методом. Исходными данными для расчётов количества выбросов являются:

    Количество единиц автотранспорта разных типов, проезжающих по выделенному участку автотрассы за единицу времени. В соот­ветствии с методикой автомобильный транспорт необходимо разделить на пять категорий: автобусы, легковые автомобили,
    лёгкие, средние и тяжёлые грузовые автомобили.

    Нормы расхода топлива автотранспортом при движении в усло­виях города (средние нормы расхода топлива приведены в табл 4).

    Таблица 4 - Средние нормы расхода топлива автотранспортом при движении в условиях города


    Тип автотранспорта

    Средние нормы расхода топлива (л на 100 км)

    Удельный расход топлива
    Уi (л на 1 км)

    Легковой автомобиль

    11-13

    0,11-0,13

    Грузовой автомобиль

    29-33

    0,29-0,33

    Автобус

    41-44

    0,41-0,44

    Дизельный грузовой автомобиль

    31-34

    0,31-0,34

    Значения эмпирического коэффициента, определяющего выброс вредных веществ от автотранспорта в зависимости от вида горючего, приве­дены в таблице 5. Коэффициент К численно равен количеству выбросов со­ответствующего компонента в литрах при сгорании в двигателе автомобиля топлива (в литрах) необходимого для проезда 1 км (т.е. равного удельному расходу).
    Таблица 5 - Выброс вредных веществ от автотранспорта в зависимости от вида горючего


    Вид топлива

    Значение коэффициента К

    Оксид углерода

    Углеводороды

    Диоксид азота

    Бензин

    0,6

    0,1

    0,04

    Дизельное топливо

    0,1

    0,03

    0,04

    Практическая работа № 1
    Тема: Определение загруженности улиц автотранспортом и некоторых параметров окружающей среды, усугубляющих загрязнение

    Цель: Данная практическая работа даёт возможность оценить загруженность участка улицы автотранспортом в зависимости от его видов, изучить и срав­нить разные улицы по нагрузке на окружающую среду, обусловленную ви­дами автотранспорта и его интенсивностью. Собранные параметры необхо­димы для расчётов уровней загрязнения воздушной среды.
    Ход работы
    Для более полной и достоверной оценки загруженности улиц авто­транспортом подсчёты автомобилей необходимо производить одним из двух возможных вариантов.

    Вариант: подсчёт автомобилей производится на одной улице, но в течение двух временных отрезков. Например, в утренние часы (с 9 до 10 утра) и в дневные часы (с 17 до 18 часов).

    Вариант: подсчёт автомобилей производится на различных улицах (например, улица в центре города и на окраине или в спальном районе), но в течение одного временного отрезка.

    Наша группа студентов будет работать по первому варианту.
    Обработка результатов:
    Все собранные материалы запишем в таблицы 6 и 7.

    Таблица 6 - Характеристика улицы

    Таблица 7.1 - Интенсивность движения автомобилей на улице Черепанова, от улицы Готвальда до улицы Машинистов с 12:2 до 12:40


    Тип автомобиля

    Количество автомобилей



    5 минут

    5 минут

    5 минут

    Легкий грузовой

    7

    5

    8

    6,7

    80

    Средний грузовой

    2

    1

    0

    1

    12

    Тяжелый грузовой

    1

    0

    0

    1/3

    4

    Легковой

    47

    58

    39

    48

    576

    Автобус

    4

    4

    4

    4

    48

    Общее количество автомобилей

    61

    68

    51

    60

    720

    Таблица 7.2 - Интенсивность движения автомобилей на улице Черепанова, от улицы Готвальда до улицы Машинистов с 18:30 до 18:45


    Тип автомобиля

    Количество автомобилей

    Среднее количество автомобилей за 5 минут

    Количество автомобилей за час

    5 минут

    5 минут

    5 минут

    Легкий грузовой

    8

    0

    5

    7,5

    90

    Средний грузовой

    1

    2

    1

    1,3

    15,6

    Тяжелый грузовой

    0

    0

    0

    0

    0

    Легковой

    63

    71

    59

    64,3

    772

    Автобус

    5

    4

    6

    5

    60

    Общее количество автомобилей

    77

    77

    71

    78,1

    937,6

    Суммарная интенсивность движения автомобилей за сутки. В ходе работы мы нашли среднее количество за два часа утром и вечером. Найдем среднее количество автомобилей за час, и умножим полученное количество автомобилей на 24.

    загруженность улиц автотранспортом согласно ГОСТ Р 52033-2003.
    низкая интенсивность движения -4-9 тысяч автомобилей в сутки;
    средняя -10-19 тысяч
    высокая - 20-32 тысячи.

    Как видно из госта на данном участке дороге высокая интенсивность движения

    Построим диаграммы загруженности улиц автомобильным транспортом
    днем


    вечером

    1- легкий грузовой

    2- средний грузовой

    3- тяжелый грузовой

    4- легковой

    5- автобус
    По таблицам 7.1 и 7.2 видно, что большинство автомобилей – легковые,. Вечером интенсивность движения больше на 23 %. потому что днем практически все автолюбители находились на работе. Вечером они возвращались с работы.

    Общий путь, пройденный каждым видом автотранспорта за 1 час (L, км), по формуле:

    N – количество автомобилей каждого типа за час;

    L - длина участка, км.

    6. Количество топлива:

    Полученные результаты занесем в таблицу 8.
    Таблица 8 - Расход топлива в зависимости от вида автомобилей


    Тип автомобиля

    Количество автомобилей N i

    Q i , в том числе

    Бензин

    Дизельное топливо

    Легковые автомобили

    674

    20,75

    -

    Грузовые автомобили (на бензине)

    98,8

    8,29

    -

    Автобусы

    54

    6,35

    -

    Грузовые дизельные автомобили

    2

    -

    0,18

    Всего?Q

    35,39

    0,18

    7. Рассчитаем по каждому виду топлива количество выделившихся вредных веществ в литрах при нормальных условиях по формуле:

    Значения К возьмем из табл 5.

    Результаты расчетов занесем в итоговую табл 9.

    Таблица 9 - Количество вредных веществ в зависимости от вида топлива


    Вид топлива

    ?Q

    Количество вредных веществ

    СО

    Углеводороды

    NO 2

    Бензин

    35,39

    21,23

    3,54

    1,4

    Дизельное топливо

    0,18

    0,018

    0,005

    0,007

    Всего

    21,25

    3,55

    1,407

    Практическая работа № 2
    Тема: Оценка уровня загрязнения атмосферного воздуха отработанными газа­ми автотранспорта на участке магистральной улицы (по концентрации СО)

    Цель: оценить по концентрации окиси углерода - СО, мг/куб.м.
    Формула оценки концентрации окиси углерода:

    0,5 - фоновое загрязнение атмосферного воздуха нетранспортного происхо­ждения, мг/куб.м;

    N - суммарная интенсивность движения автомобилей на городской дороге, автомобиль/час;

    К t - коэффициент токсичности автомобилей по выбросам в атмосферный воздух окиси углерода;

    К а - коэффициент, учитывающий аэрацию местности;

    К у - коэффициент, учитывающий изменение загрязнения атмосферного воздуха окисью углерода в зависимости от продольного уклона;

    К с - коэффициент, учитывающий изменения концентрации окиси углерода в зависимости от скорости ветра;

    К b - то же в зависимости от относительной влажности воздуха;

    К р - коэффициент увеличения загрязнения воздуха окисью углерода у пере­сечения улиц.

    Коэффициент токсичности автомобилей определяется как средневзвешен­ный для потока автомобилей по формуле:

    Pi - состав движения в долях единиц. Значение К ti определяется по таблице 1

    Таблица 1 - Коэффициент токсичности автомобилей

    Значение коэффициента К а учитывающего аэрацию местности, определяют по таблице 2.
    Таблица 2 - Коэффициент аэрации местности


    Тип местности по степени аэрации

    Коэффициент К а

    Транспортные тоннели

    2,7

    Транспортные галереи

    1,5

    Магистральные улицы и дороги с многоэтажной застройкой с двух сто­рон

    1,0

    Жилые улицы с одноэтажной за­стройкой, улицы и дороги в выемке

    0,6

    Городские улицы и дороги с одно­сторонней застройкой, набережные, эстакады, виадуки, высокие насыпи

    0,4

    Пешеходные тоннели

    0,3

    Городские улицы с низкоэтажной застройкой

    0,8

    Значение коэффициента К у, учитывающего изменение загрязнения воздуха оксидом углерода в зависимости от величины продольного уклона, определяют по табл 3.
    Таблица 3 - Коэффициент, учитывающий загрязнение воздуха окисью углерода в зависимости от продольного уклона улицы

    Продольный уклон (в градусах)

    Коэффициент К у

    0

    1,00

    2

    1,06

    4

    1,07

    6

    1,18

    8

    1,55

    Коэффициент изменения концентрации окиси углерода в зависимости от скорости ветра К с определяется по табл 4.
    Таблица 4 - Коэффициент изменения концентрации окиси углерода в зависимости от скорости ветра

    Скорость ветра, м/с

    Коэффициент К с

    1

    2,70

    2

    2,00

    3

    1,50

    4

    1,20

    5

    1,05

    6

    1,00

    Значения коэффициента К ь, определяющего концентрацию окиси углерода в зависимости от относительной влажности воздуха, приведены в таблице 5.
    Таблица 5 - Коэффициент изменения концентрации окиси углерода в зависимости от влажности воздуха


    Относительная влажность, %

    Коэффициент К ь

    100

    1,45

    90

    1,30

    80

    1,15

    70

    1,00

    60

    0,85

    50

    0,75

    Коэффициент увеличения загрязнения воздуха окисью углерода К р пересе­чения улиц приведен в таблице 6.

    Таблица 6 - Коэффициент увеличения загрязнения воздуха окисью углерода в местах пересечения улиц

    Подставим значения коэффициентов в формулу и подсчитаем концентрацию окиси углерода:

    Вечером

    Вывод
    Полученные концентрации окиси углерода сравнили с ПДК выбросов автотранспорта по окиси углерода равной 5 мг/куб.м. днем выбросы превышают ПДК в 4,5раза вечером в 12,5 раз (стих ветер и увеличилось число машин)

    Для снижения загрязнённости атмосферы автомобильным транспортом:

    Установка на бензиновые двигатели катализаторов.

    Перевод бензиновых двигателей на метан

    Использовать топливо соответствующее нормам Евро-3.

    Посадить тополя вдоль проезжей части

    ТК дизель более экологичен, по возможности, использовать большие дизельные автобусы вместо ГАЗелей

    Промышленно-экономическое развитие сопровождается, как правило, ростом загрязнения окружающей среды. Большинство крупных городов характеризуются значительной концентрацией промышленных объектов на относительно незначительных территориях, что представляет опасность для здоровья людей.

    Одним из экологических факторов, оказывающих наиболее выраженное влияние на здоровье человека, является качество воздуха. Особую опасность в настоящее время представляют выбросы в атмосферу загрязняющих веществ. Это обусловлено тем, что токсиканты поступают в человеческий организм в основном через дыхательные пути.

    Выбросы в атмосферу: источники

    Различают природные и антропогенные источники поступления загрязнителей в воздух. Основными примесями, которые содержат выбросы в атмосферу от естественных источников, являются пыль космического, вулканического и растительного происхождения, газы и дым, образующиеся в результате лесных и степных пожаров, продукты разрушения и выветривания горных пород и почв и пр.

    Уровни загрязнения воздушной среды природными источниками носят фоновый характер. Они достаточно мало изменяются со временем. Основными источниками поступления в воздушный бассейн загрязняющих веществ на современном этапе являются антропогенные, а именно − промышленность (различные отрасли), сельское хозяйство и автотранспорт.

    Выбросы предприятий в атмосферу

    Самыми крупными «поставщиками» различных загрязнителей в воздушный бассейн являются металлургические и энергетические предприятия, химическое производство, стройиндустрия, машиностроение.

    В процессе сжигания топлива различных видов энергетическими комплексами в атмосферу выделяются большие количества сернистого ангидрида, оксидов углерода и азота, сажи. Также в выбросах (в меньших количествах) присутствует ряд других веществ, в частности углеводороды.

    Основные источники пылегазовых выбросов в металлургическом производстве - плавильные печи, разливочные установки, травильные отделения, агломерационные машины, дробильноразмольное оборудование, разгрузка-погрузка материалов и пр. Наибольшую долю среди общего количества веществ, поступающих в атмосферу, занимают окись углерода, пыль, ангидрид сернистый, оксид азота. В несколько меньших количествах выбрасываются марганец, мышьяк, свинец, фосфор, пары ртути и пр. Также в процессе сталеплавильного производства выбросы в атмосферу содержат парогазовые смеси. В их состав входит фенол, бензол, формальдегид, аммиак и ряд других опасных веществ.

    Вредные выбросы в атмосферу от отрасли, несмотря на небольшие объемы, представляют особую опасность для природной среды и человека, поскольку характеризуются высокой токсичностью, концентрированностью и значительным разнообразием. Поступающие в воздух смеси в зависимости от вида выпускаемой продукции могут иметь в своем составе летучие органические соединения, соединения фтора, нитрозные газы, твердые вещества, хлористые соединения, сероводород и пр.

    При производстве стройматериалов и цемента выбросы в атмосферу содержат значительные количества различной пыли. Основными технологическими процессами, приводящими к их образованию, являются измельчение, обрабатывание шихт, полуфабрикатов и продуктов в потоках горячих газов и пр. Вокруг заводов, производящих различные стройматериалы, могут образовываться зоны загрязнения радиусом до 2000 м. Они характеризуются высокой концентрацией в воздухе пыли, содержащей частицы гипса, цемента, кварца, а также ряда других загрязняющих веществ.

    Выбросы автотранспорта

    В крупных городах огромное количество загрязнителей в атмосферу поступает от автотранспортных средств. По разным оценкам, на их долю приходится от 80 до 95%. состоят из большого количества токсичных соединений, в частности оксидов азота и углерода, альдегидов, углеводородов и пр. (всего около 200 соединений).

    Наибольшие объемы выбросов отмечаются в зонах расположения светофоров и перекрестков, где автомобили передвигаются на малой скорости и в режиме холостого хода. Расчет выбросов в атмосферу показывает, что основными составляющими выхлопов в этом случае являются и углеводороды.

    При этом следует отметить, что, в отличие от стационарных источников выбросов, работа автотранспорта приводит к загрязнению воздуха на городских улицах на высоте человеческого роста. В результате вредному воздействию загрязнителей подвергаются пешеходы, жители расположенных у дорог домов, а также произрастающая на прилегающих территориях растительность.

    Сельское хозяйство

    Влияние на человека

    Согласно различным источникам, имеется прямая связь между загрязнением воздуха и рядом заболеваний. Так, например, длительность течения респираторных заболеваний у детей, которые живут в относительно загрязненных районах, в 2-2,5 раза больше, нежели у тех, что проживают в других районах.

    Кроме того, в городах, характеризующихся неблагоприятной экологической обстановкой, у детей отмечены функциональные отклонения в системе иммунитета и кровообразования, нарушения компенсаторно-адаптационных механизмов к условиям внешней среды. Многими исследованиями выявлена также связь между загрязнением воздуха и смертностью людей.

    Основными составляющими выбросов, поступающих в воздух от различных источников, являются взвешенные вещества, оксиды азота, углерода и серы. Выявлено, что зоны с превышением ПДК по NO 2 и CO охватывают до 90% городской территории. Приведенные макрокомпоненты выбросов способны вызвать серьезные заболевания. Накопление этих загрязнений приводит к повреждению слизистых оболочек верхних дыхательных путей, развитию легочных заболеваний. Кроме того, повышенные концентрации SO 2 могут вызвать дистрофические изменения в почках, печени и сердце, а NO 2 - токсикозы, врожденные аномалии, сердечную недостаточность, нервные расстройства и др. Некоторыми исследованиями выявлена взаимосвязь между заболеваемостью раком легких и концентрациями SO 2 и NO 2 в воздухе.


    Выводы

    Загрязнение окружающей природной среды и, в частности, атмосферы, имеет неблагоприятные последствия для здоровья не только настоящего, но и последующих поколений. Поэтому можно смело утверждать, что разработка мероприятий, направленных на то, чтобы уменьшить выбросы вредных веществ в атмосферу, − одна из самых актуальных на сегодняшний день проблем человечества.