Двигатель внутреннего сгорания нового поколения. Чем отличаются новые двигатели от старых? Универсальный реактивно-роторный двигатель Белашова

В основу концепции двигателя, придуманного Кармело Скудери, американским автомехаником-самоучкой, положен принцип разделения цилиндров на рабочие и вспомогательные. В отличие от схемы Отто, в двигателе с разделенным циклом SCC (Split-Cycle Combustion) на каждый оборот вала приходится один рабочий такт. Вспомогательные цилиндры, в которых поршень сжимает воздух, соединяются с основными через перепускные каналы. В каждом из каналов находится по два клапана — компрессионный и расширительный. В пространстве между ними воздух достигает максимального уровня сжатия. Впрыск топлива в камеру сгорания рабочего цилиндра происходит одновременно с открытием расширительного клапана, а зажигание — после прохождения поршнем верхней мертвой точки. Волна газов как бы догоняет его, исключая детонацию смеси. В ходе виртуальных испытаний рядного прототипа двигателя Скудери было выявлено, что он очень стабилен. Коэффициент отклонения параметров рабочих тактов от средней величины в наиболее «проблемной» зоне оборотов — от холостых до полутора тысяч — у SCC почти вдвое ниже, чем у ДВС Отто: 1,4% против 2,5. На первый взгляд это немного, но для профессионалов разница огромна. Данный показатель говорит об очень высоком качестве смеси и точнейшей ее дозировке. Безнаддувный четырехцилиндровый рядный двигатель Скудери на 25% экономичнее обычных аналогов по мощности, а его оригинальная гибридизированная версия Scuderi Air-Hybrid — на 30−36%. В Air-Hybrid предварительное сжатие воздуха в пневматическом аккумуляторе-ресивере происходит во время торможения автомобиля. Затем воздух подается в перепускной канал, снижая нагрузку на поршень вспомогательного цилиндра.

Двигатель Скундери. Производство двигателей системы Кармело Скудери можно легко организовать на любом моторостроительном предприятии с использованием традиционных узлов. Но нужно ли это производителям?..

В 2011 году компанией будет представлен двигатель второго поколения с V-образной архитектурой, в котором перепускные каналы будут сделаны в виде отдельных модулей. В первой версии — с цельнолитой головкой — они находились в стенке между парами цилиндров. V-образная схема позволяет улучшить доступ к ним со стороны ресивера и обеспечить более эффективное охлаждение узла. По прогнозам ученых научно-исследовательского института Саутвест, которые вплотную занимаются доводкой виртуальной модели рядного двигателя, разница в КПД между такой «четверкой» и равносильным мотором Отто достигнет 50%. Небольшой вес, отличная удельная мощность (135 л.с. на литр объема) и технологическая простота SCC делают его весьма перспективным для внедрения в жизнь. Известно, что пристальный интерес к нему проявляют сразу несколько игроков высшей лиги мирового автопрома, а также производители комплектующих. В частности, знаменитая компания Robert Bosch. Президент Scuderi Group Сэл Скудери уверен, что уже через три года детище его отца пойдет в серию.


Вряд ли Lotus Omnivore когда-либо станет основным силовым агрегатом для автомобиля. Но в качестве вспомогательного — например, генератора — он вполне подходит.

Lotus Omnivore

Кто сказал, что два такта остались в прошлом? Инженеры Lotus Engineering считают, что потенциал двухтактных движков серьезно недооценен автопроизводителями, а   прожорливость — всего лишь миф. Они прогнозируют их триумфальное возвращение в 2013 году под капоты серийных автомобилей. В 2009 году в Женеве компания представила концептуальный 500-кубовый двигатель Omnivore, работающий на любом виде жидкого топлива. Моторчик блещет сразу несколькими инновационными технологиями, главная из которых  - изменяемая степень сжатия при помощи подвижной верхней стенки камеры сгорания. В зависимости от вида топлива и нагрузки сжатие в Omnivore может изменяться в диапазоне от 10 до 40 к одному. Приготовление сбалансированной топливовоздушной смеси обеспечивает система прямого впрыска Orbital FlexDI с двумя инжекторами, а   параметрами отвода отработанных газов управляет патентованный улавливающий клапан CTV (Charge Trapping Valve). Похоже, британцам удалось то, к чему стремятся все разработчики инновационных ДВС: в цикле стендовых испытаний Omnivore уверенно поддерживал режим сгорания HCCI даже на оборотах холостого хода и в «красной зоне». Конструкция Omnivore замечательна еще и тем, что его блок и головка отлиты в одной цельной детали.


Ecomotors OPOC. Одним из основных преимуществ конструкции профессора Хоффбауэра является возможность «надевать» на коленвал всё новые и новые пары цилиндров, получая нечто вроде модульного двигателя.

Согласно спецификации, концепт на 10% экономичнее атмосферных бензиновых двигателей равной мощности, а по чистоте выхлопа легко дотягивает до нормативов Евро-6. Если Lotus сможет заинтересовать автопроизводителей, то потомки концептуального Omnivore станут первыми кандидатами на роль бортовых генераторов для электрогибридов. Для этого у них есть всё: неприхотливость, предельная компактность и высокая энергоемкость.

Ecomotors OPOC

Среди компаний, пытающихся отправить классический ДВС на свалку, американская Ecomotors стоит особняком не только из-за экстравагантности своих идей. Работу над сверхмощным оппозитным двигателем OPOC благословили титан венчурного бизнеса Винод Хосла и миллиардер Билл Гейтс. В совет директоров крохотной компании входит несколько персон, имена которых служат пропуском в закрытый клуб автопроизводителей, а стенды Ecomotors стали привычными на самых элитных мировых автосалонах.


Оппозитный двухтактный двухцилиндровый модульный ДВС под названием OPOC был придуман еще в конце 1990-х годов профессором Петером Хоффбауэром, долгое время работавшим главным мотористом в компании Volkswagen. Суперкомпактный дизель Хоффбауэра демонстрирует беспрецедентно высокую удельную мощность порядка 3 л.с. на килограмм массы. Например, стокилограммовая «труба» выдает 325 л.с. и 900 Нм крутящего момента. При этом КПД OPOC вплотную приближается к 60%, вдвое выигрывая у современных дизельных моторов со сложным наддувом. Одна из главных «фишек» этого оппозитника — возможность составлять из отдельных модулей, каждый из которых является полноценным двигателем, силовые установки рядной 4-, 6- и 8-цилиндровой конфигурации. Парадоксально, но при всей своей заряженности OPOC работает на довольно скромных степенях сжатия в пределах 15−16 к одному и не требует специальной подготовки топлива.

В принципе OPOC — это труба с двумя парами поршней, совершающими одновременные разнонаправленные движения. Пространство между парой — камера сгорания. Шатуны с необычно длинной ножкой соединяют поршни с центральным коленчатым валом. В центре камеры установлена форсунка системы впрыска, а впускные и выпускные порты расположены в области нижней мертвой точки центральных поршней. Порты заменяют сложный клапанный механизм и распредвал. Важный элемент конструкции — электрический турбонагнетатель с предварительным подогревом воздуха, заменяющий, в частности, привычные калильные свечи. В момент запуска турбина подает в камеру сгорания заряд сжатого воздуха, нагретого до 100 °C.


IRIS. Основной «фишкой» конструкции двигателя Iris является высокая полезная площадь «поршней"-лепестков. Неподвижные стенки занимают всего 30% от общей площади камеры сгорания, что позволяет заметно повысить КПД двигателя.

По словам президента компании Дональда Ранкла, бывшего вице-президента General Motors, в настоящее время в собственном техцентре Ecomotors проводятся стендовые испытания шестого поколения двигателя, которые завершатся в начале 2012 года. И это будет уже не очередной рабочий прототип, а агрегат, предназначенный для конвейера. Впрочем, интерес к разработке имеется не только у автомобилистов, но и у военных, производителей авиатехники, строителей и горняков. Запланировано производство сразу четырех типов модулей OPOC с диаметрами поршня 30, 65, 75 и 100 мм.

IRIS

Для многих людей наблюдение за причудливо движущимися, вращающимися и пульсирующими механизмами успешно заменяет таблетки от стресса.

Завораживающее глаз детище ученого, изобретателя и предпринимателя из Денвера Тимбера Дика, трагически погибшего в автокатастрофе в 2008 году, можно отнести к гомеопатическим средствам этой категории. Но двигатель внутреннего сгорания IRIS (Internally Radiating Impulse Structure), несмотря на всю свою оригинальность, вовсе не пустышка. Защищенный со всех сторон патентами, он был отмечен премиями за инновации от NASA, нефтяной корпорации ConocoPhillips и химического гиганта Dow Chemical. Двухтактный ДВС с изменяемой геометрией и площадью поршня, согласно расчетам, имеет КПД 45%, компактные размеры и малый вес. Кроме того, в случае принятия его на вооружение автопроизводителями покупателю не придется переплачивать — цена агрегата будет не выше, чем у обычных бензиновых моторов.


РЛДВС. Отличием роторно-лопастного двигателя от всех остальных, упомянутых в материале, является то, что он находится в считанных миллиметрах от серийного производства. На 2011 год намечены испытания российского «ё-мобиля» с подобным двигателем, а с 2012 года — и серия.

Как считал Дик, в стандартной паре «камера сгорания — рабочая поверхность поршня» самым слабым местом является постоянная площадь контакта. На головку приходится всего 25%  общей площади камеры. В концепции IRIS шесть поршней, представляющих собой стальные, изогнутые волной лепестки, имеют полезную площадь почти в три раза больше - неподвижные стенки камеры занимают лишь 30% площади.

Воздух поступает в камеру сгорания через впускные клапаны, когда лепестки находятся на максимальном удалении от центра. Одновременно через открытые выпускные клапаны удаляется отработанный газ. Затем лепестки, колеблющиеся на валах, смыкаются к середине камеры, сжимая воздух. В момент максимального сближения при полностью закрытых клапанах происходит впрыск топлива и зажигание. Расширяясь, раскаленные газы раздвигают лепестки-поршни, что, в свою очередь, приводит к повороту валов. В верхней мертвой точке открываются выпускные клапаны. Затем все повторяется снова и снова. Довольно простой редуктор превращает колебание шести валов во вращение главного вала.


Российский роторно-лопастной

Роторно-лопастной двигатель (РЛДВС) — это вовсе не разработка XXI века. Его конструкцию придумали еще в 1930-х, и с тех пор не проходило и десятилетия без появления очередного патента на новый РЛД. Самым известным был, пожалуй, двигатель Вигриянова, созданный в 1973  году. Но попадать в серию РЛД никак не хотели. Основной проблемой была сложность синхронизации валов роторов и тем более снятия с них момента — во времена слабого развития электроники синхронизатор занимал чуть ли не целую комнату; РЛД мог использоваться разве что в качестве стационарной силовой установки. Это сводило на нет одно из его главнейших преимуществ — компактность и небольшой вес.

РЛД — это цилиндр, внутри которого на одной оси установлены два ротора, с парой лопастей каждый. Лопасти делят пространство цилиндра на рабочие камеры; в каждой совершается четыре рабочих такта за один оборот вала. Сложность синхронизации обусловлена в первую очередь неравномерным движением роторов друг относительно друга, их «пульсацией».

Но как только на свет появился компактный и удобный механизм синхронизации, РЛД сразу обрел серьезную серийную перспективу. Самое интересное и приятное, что разработали такой механизм в России, в рамках нашумевшего проекта «ё-мобиль». Энергоустановка «ё-мобиля» весит всего 55 кг (35 — двигатель с синхронизатором, 20 — электрогенератор), а мощность может выдавать порядка 100 кВт, хотя для серийных моделей ее ограничат 45 кВт (60 л.с.). Помимо компактности, РЛД характеризуется возможностью масштабирования. Его можно спокойно увеличивать в размерах вплоть до малого судового двигателя мощностью 1000 кВт. Энерговооруженность силовой установки «ё-мобиля» аналогична двухлитровому 150-сильному ДВС традиционной компоновки.

На сегодняшний день двигатели внутреннего сгорания переживают не лучший период своей жизни. Постоянный рост цен на нефть, глобальное потепление, в котором винят и их тоже, а также растущие «зеленые» настроения в развитых странах не прибавляют авторитета двигателям внутреннего сгорания.

Но, не смотря на все свои минусы, мы с ними не сможем распрощаться еще на протяжении многих десятилетий. Однако мы можем попытаться сократить немалые аппетиты наших любимцев, тратя меньше энергии на выделение тепла и выжимая из каждой капли топлива тот максимум, который позволяет нам физика.

И, правда, двигатель внутреннего сгорания совсем не безнадежен. В новых автомобильных разработках, и научных лабораториях по всему миру бензиновый двигатель испытывает что-то похожее на Ренессанс.

Защитники экологии не должны бояться этого возрождения двигателей внутреннего сгорания. Так как данные новшества не просто решительно уменьшают количество вредного топлива, они служат технологическим мостом, который приведет нас к полностью электрофицированому будущему. Большинство таких технологий находиться все еще на стадии разработок, ожидая финансирования, или внедрены пока только в опытные образцы, для демонстрации своих возможностей. Не одно из данных решений не является панацеей, но каждое из них показывает, насколько меньше мы могли бы использовать топлива, делая автомобили намного эффективнее.

В прошлом веке бензиновые двигатели стали повсеместны, в этом столетии они станут еще и умными. Рассмотрим некоторые из новых технологий будущего двигателей внутреннего сгорания:

Двигатель Scuderi

Группа Scuderi представляет двигатель разделенного цикла - он делит четыре обычных поршневых цилиндра на два различных типа для более разумного использования каждой капли энергии, которую они могут выработать.

Принцип действия технологии заключается в соединение двух цилиндров между собой. В отличии от обычных двигателей, которые во время четвертого такта выбрасывают сжатые газы, двигатель Scuderi впрыскивает сжатый воздух во второй цилиндр, где проходит воспламенение и выхлоп.

Благодаря данной технологии мы можем использовать два цилиндра из четырех бесплатно. Как показывают компьютерные модели, двигатель Scuderi улучшает экономию по сравнению со своими обычными аналогами на 50 процентов.

Разделение двигателя на горячую и холодную части

Как и предыдущий данный двигатель делиться на две рабочие части, но по сравнению с Scuderi дополнительно использует разные температуры в разных частях двигателя, для достижения максимального КПД.

Большая проблема в обычном четырехтактном двигателе - первые два такта (впуск и сжатие) наиболее эффективны при холоде, в то время третий и четвертый такты работают лучше в горячих условиях. Как утверждают инженеры, если придерживаться данных требований, можно добиться до 40 процентов экономии. Просто отделив область высокой температуры радиатором.

Процесс проходит следующим образом: впуск и сжатие происходят в холодном цилиндре, гарантируя максимальную эффективность при этом, а сгорание и выхлоп сжатой в холодной части смеси происходят в горячем цилиндре. Данная технология дает до 20 процентов экономии топлива, но ученые надеются усовершенствовать систему и выжать из нее 50 процентов.

Двигатель Pinnacle


В данном виде двигателей поршни расположены противоположно друг к другу. Но в отличие от оппозитных двигателей, которые сейчас широко распространены, тут на одну головку цилиндра приходиться два поршня, соответственно взрыв горючей смеси происходит между двумя поршнями. При таком расположении поршней получается колоссальная экономия энергии, которая в привычных двигателях внутреннего сгорания тратиться на выделение высокой температуры.

Первые малолитражки с таким типом двигателей должны быть выпущены уже в 2015, а большие двигатели будут готовы к 2016. Инженеры ожидают увеличение эффективности данного двигателя до 50 процентов.

Данная схема двигателя объединяет в себе конструкции известного многим оппозитного двигателя и описанного выше двигателя Pinnacle. В данной конструкции два поршня расположены в одной головке цилиндра, а два других находятся тоже вместе под углом 180 градусов.

В обоих цилиндрах сгорание происходит в центре, между поршнями, длинные шатуны соединяют наиболее удаленные поршни с коленчатым валом, который расположен посредине. Как и другие оппозитные двигатели, OPOC не нуждается в тяжелых головках цилиндров, снижая вес двигателя. Ход поршней в таком двигателе, меньше чем в обычных бензиновых двигателях.

Инженеры Ecomotors надеяться создать демонстрационный автомобиль с двигателем OPOC, который на 2 литрах топлива будет проезжать до 100 км.

Замена обычных свечей зажигания на лазеры


Лазеры стают все лучше, и теперь их можно использовать в двигателях внутреннего сгорания. В свечах, которые используются сегодня, есть одна проблема, для сжигания большего количества воздуха и меньшего количества топлива нужна сильная искра. Но если увеличить мощность искры, будут быстро изнашиваться электроды. Идеальным выходом из данной ситуации может быть использование лазеров. У лазеров есть большой плюс по сравнению с обычными свечами зажигания, их можно очень точно настроить: установить нужную мощность, угол зажигания, тем самым увеличив мощность и эффективность процесса сгорания.

Японские инженеры уже разработали керамические лазеры диаметром 9 мм специально для двигателей внутреннего сгорания. Такие нововведения будут достаточно эффективны и не требуют серьезных доработок в существующих двигателях.

Процесс сгорания TSCiTM

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость - это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

В далеком 1978 году группа ученых японского института Clean Engine Research, пытавшихся оптимизировать процесс сгорания топлива в двухтактных мотоциклетных моторах, случайно зафиксировала необычный феномен, названный HCCI (Homogeneous charge compression ignition). При достижении определенного давления в камере бензинового двухтактника возгорание топливовоздушного заряда происходило без искры свечи зажигания. Но самое интересное -- вместо привычного зажигания смеси около свечи и последующего распространения пламени на периферию в камере одновременно возникало огромное количество микроочагов возгорания. Как следствие, смесь сгорала при более низкой, чем обычно, температуре, очень быстро и практически полностью. Имеющийся в то время математический аппарат и уровень развития термодинамики не позволили понять причины возникновения феномена HCCI, и его посчитали курьезом. Через 20 лет в арсенале инженеров появились мощные средства компьютерного моделирования, которые помогли приоткрыть завесу тайны над HCCI. Работы в этой области в конце 1990-х годов начались в Германии (Mercedes-Benz, Volkswagen), Японии (Nissan) и Америке (General Motors).

Для образования однородного топливовоздушного облака с предельно низкой плотностью в состав смеси вводятся горячие отработанные газы. Они быстро разогревают этот коктейль, облегчая его перемешивание внутри камеры. Если в условиях классического прямого впрыска топливо распыляется в виде аэрозоля, то в HCCI смесь представляет собой мельчайший туман. Когда поршень сжимает смесь до определенного объема, температура подскакивает до точки самовоспламенения. Сгорание HCCI характерно отсутствием открытого пламени и более низкой, чем у дизельных двигателей, температурой. В результате доля сгоревшего топлива вырастает до 95?97% в сравнении с 75% в циклах Отто и Дизеля. Причем на богатых смесях HCCI не работает -- ему нужны почти гомеопатические доли топлива, на 30 и более процентов беднее, чем у лучших современных ДВС.

Тем не менее отработанная технология HCCI -- пока еще дело будущего. Термодинамика процесса чрезвычайно сложна и требует от ученых решения массы проблем. Главные из них -- неустойчивая работа на холостых и максимальных оборотах, неконтролируемая детонация остатков смеси и неравномерность распределения топливовоздушного облака в камере. Правда, в последние месяцы хорошие новости появляются ободряюще регулярно. Специалисты General Motors сообщают, что сумели обуздать стихию на малых оборотах, а британские инженеры из Lotus заявляют, что построили работающий прототип супердвигателя Omnivore, «снизу доверху» поддерживающий процесс HCCI. По мнению вице-президента компании Bosch Хеннинга Шнайдера, автомобили с расходом топлива в пределах 3 л на 100 км, оснащенные ДВС с технологией HCCI, станут серийными уже в 2015 году. У Volkswagen подход более осторожный -- компания разрабатывает новый двигатель, работающий с использованием свечей зажигания при полной нагрузке и на холостом ходу, а в среднем диапазоне оборотов -- в режиме HCCI. Инженеры Nissan также не стоят на месте -- недавно они объявили о создании мощного софта, позволяющего создать компьютерную модель феномена HCCI, и уже начали работать над собственным супердвигателем.

Горячая стена

Американский инженер Джон Заяц предложил собственную концепцию ДВС, близкую к двигателю с раздельным циклом Скудери.

Изобретатель утверждает, что его двигатель на 15% экономичнее дизеля и на 30% - бензинового аналога по мощности. В двигателе Заяца воздух из цилиндра сжатия попадает в камеру, где создается повышенное давление топливной смеси, на 40% больше обычного уровня для бензиновых моторов. Камера, ее форма, принцип работы, дизайн и материалы для изготовления защищены 19 патентами. Воздух в камере смешивается с топливом и возгорается. Процесс сгорания намного продолжительней, чем в обычном ДВС. Внутри камеры создается особая среда -- «горячая стена», которая служит аккумулятором энергии: неизменная температура и давление в ней сохраняются в 10?100 раз дольше, чем в камере сгорания обычного мотора. Затем раскаленные газы через специальный клапан попадают в рабочий цилиндр.

Очевидно, что двигатель внутреннего сгорания недостаточно экономичен и по сути имеет невысокий КПД . Это заставляет ученых искать альтернативы – в частности, создавать доступный электрический или водородный транспорт. Однако последние разработки показывают, что ДВС можно сделать по-настоящему эффективным. За счет чего это осуществимо и что мешает применять такие технологии на практике уже сейчас?

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще «топчется» вокруг отметки в 30%.

Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10–20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации.

Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Экомотор

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15–20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.

Рис. 1. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе.

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу . При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением.

Двигателем полностью управляет электроника , благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

Также мотор оснащен управляемым электроникой турбокомпрессором , который утилизирует энергию выхлопных газов и вырабатывает электроэнергию. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе. У него нет блока головки цилиндров, он сделан из обычных материалов и издает меньше шума и вибраций.

При этом двигатель получился очень легким: на 1 кг веса он выдает мощность больше 1 л.с (на практике он приблизительно в 2 раза легче традиционного двигателя такой же мощности). Более того, изделие EcoMotors легко масштабируется: достаточно добавить несколько модулей и двигатель малолитражки превращается в мотор мощного грузовика.

Опытный двигатель EcoMotors EM100 при размерах 57,9х 104,9х47 см весит 134 кг и выдает мощность 325 л.с. при 3,500 оборотах в минуту (на дизтопливе), диаметр цилиндров – 100 мм. Расход топлива у пятиместного автомобиля с мотором EcoMotors планируется чрезвычайно низкий – на уровне 3–4 л на 100 км .

Экономия во всем

Компания Achates Power поставила себе цель разработать ДВС с расходом топлива 3–4,5 л на 100 км для автомобиля размером с Ford Fiesta. Пока их экспериментальный дизельный двигатель демонстрирует гораздо больший аппетит, но разработчики надеются уменьшить расход. Однако главное в данном моторе исключительно простая конструкция и низкая себестоимость . Согласимся, что экономия на топливе мало чего стоит, если она обошлась ценой многократного удорожания мотора.

Рис. 2. Двигатель Achates Power имеет предельно простую конструкцию.

Двигатель Achates Power имеет предельно простую конструкцию. Это двухтактный оппозитный дизельный мотор, в котором два поршня движутся навстречу друг другу, образуя камеру сгорания. Таким образом отпадает необходимость в головке блока цилиндров и сложном газораспределительном механизме. Большинство деталей мотора изготавливаются с помощью несложных производственных процессов и не требуют дорогих материалов. В целом, двигатель содержит намного меньше деталей и металла, чем обычный.

В настоящее время на испытаниях мотор Achates Power демонстрирует экономичность на 21% большую, чем лучшие «традиционные» дизельные двигатели. Более того, он имеет модульную конструкцию, большую удельную мощность (соотношение вес/л.с.). Также благодаря особой форме верхней части поршня создается вихревой поток особой формы, обеспечивающий отличное перемешивание топливовоздушной смеси, эффективный теплоотвод и уменьшающий время сгорания.

В результате двигатель не только соответствует военным спецификациям армии США, но и превосходит по характеристикам двигатели, которые сегодня устанавливаются на боевую технику.

Простой способ

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25–30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.

Рис. 3. Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом . В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

Электронный клапан

Компания Grail Engine Technologies разработала уникальный двухтактный двигатель с очень заманчивыми характеристиками.

Так, при потреблении 3–4 литров на «сотню», двигатель выдает 200 л.с. Мотор с мощностью 100 л.с. весит менее 20 кг, а мощностью 5 л.с. – всего 11 кг! При этом Grail Engine, в отличие от обычных двухтактных моторов, не загрязняет топливо маслом из картера, а значит, соответствует самым жестким экологическим стандартам.

Сам двигатель состоит из простых деталей, в основном изготавливаемых способом отливки. Секрет выдающихся характеристик кроется в схеме работы Grail Engine. Во время движения поршня вверх, внизу создается отрицательное давления воздуха и через специальный углепластиковый клапан воздух проникает в камеру сгорания. В определенной точке движения поршня начинает подаваться топливо, затем в верхней мертвой точке с помощью трех обычных электросвечей происходит зажигание топливно-воздушной смеси, клапан в поршне закрывается. Поршень идет вниз, цилиндр заполняется выхлопными газами. По достижении нижней мертвой точки поршень опять начинает движение вверх, поток воздуха вентилирует камеру сгорания, выталкивая выхлопные газы, цикл работы повторяется.

Рис. 4. Секрет выдающихся характеристик кроется в схеме работы Grail Engine.

Компактный и мощный Grail Engine идеально подходит для гибридных автомобилей, где бензиновый мотор вырабатывает электроэнергию, а электромоторы крутят колеса.

В такой машине Grail Engine будет работать в оптимальном режиме без резких скачков мощности, что существенно повысит его долговечность, снизит шум и расход топлива. При этом модульная конструкция позволяет присоединять к общему коленвалу два и более одноцилиндровых Grail Engine, что дает возможность создания рядных двигателей различной мощности.

Новые модели авто появляются каждый год – но по каким-то причинам на них не стоят вышеописанные экономичные и простые двигатели. Действительно, двигателями новой конструкции интересуются все: от вездесущего инвестора Билла Гейтса до Пентагона. Однако автопроизводители не спешат устанавливать новинки на свои машины. Видимо, все дело в том, что крупные автоконцерны сами производят двигатели и, естественно, не желают делиться прибылью со сторонними разработчиками.

Но в любом случае жесткие экологические стандарты и электромобили заставят автопроизводителей внедрять новые технологии, гораздо более важные для здоровья людей и всей планеты, чем мультимедийные системы и дизайнерские изыски.

Дизель с четырьмя турбинами, первый в мире мотор с электрическим нагнетателем и революционный агрегат, способный вдохнуть в ДВС новую жизнь: «Мотор» представляет обзор силовых установок с самыми нестандартными решениями, показанными за последние несколько месяцев.

С начала 2016 года нам показали впечатляющие своей конструкцией дизели для флагманской модели BMW и «заряженной» версии Audi Q7, малолитражный, но очень «умный» бензиновый мотор Volkswagen, «восьмерку» для новой «Панамеры» и необычный продукт совместной работы Koenigsegg и китайцев из фирмы Qoros.

Что общего у «семерки» BMW и суперкара Bugatti Veyron? Количество турбин в моторе! Этой весной баварский флагман получил новый дизельный агрегат: три литра рабочего объема, шесть цилиндров и четыре нагнетателя. Четыре! Это не только первый в истории серийный двигатель «на тяжелом топливе» с таким количеством турбин, но и мощнейшая дизельная «шестерка» в мире.

Двигатель развивает 400 лошадиных сил 760 Нм крутящего момента - на 19 сил и 20 Нм больше прежнего агрегата с тремя компрессорами. Мотор, работающий в паре с восьмиступенчатым «автоматом», позволяет «семерке» ускоряться с места до ста километров в час за 4,6 секунды (длиннобазный седан проделывает то же самое упражнение за 4,7 секунды) - на 0,3 секунды быстрее предшественника. Но наверняка в конструкцию этого мотора заложен куда больший потенциал.

Система многоступенчатого наддува этого мотора состоит из двух малоинерционных нагнетателей высокого давления, установленных в едином блоке, а также двух компактных компрессоров низкого давления. Все турбины включаются в работу последовательно, причем второй компрессор высокого давления задействуется только при резком ускорении и только на оборотах коленвала выше 2500 в минуту.

Новый агрегат получился чуть легче и тяговитее: первые 450 Нм крутящего момента доступны уже с 1000 оборотов в минуту, а на полку в 760 Нм мотор выходит в диапазоне от 2000 до 3000 оборотов в минуту.

Дополнительная турбина низкого давления позволила не только увеличить отдачу мотора, но и повысить топливную экономию на 11 процентов - до 5,7-5,9 литра на сто километров пробега.

Концерн Volkswagen на симпозиуме в Вене представил новую 1,5-литровую «турбочетверку», которая заменит нынешний наддувный агрегат объемом 1,4 литра. Главное новшество этого двигателя - турбина с изменяемой геометрией крыльчатки, которая впервые в мире появится на массовых моделях с ДВС с искровым зажиганием.

Компрессоры с изменяемой геометрией компании Peugeot, Citroen, Honda и Chrysler применяли еще в конце 1980-х годов, однако сейчас эта технология используется только на спорт- и суперкарах, вроде Porsche 911 Turbo, а также на новых турбированных «четверках» моделей 718 Cayman и 718 Boxster. Ну и в дизельных агрегатах, конечно же.

Особенность такого турбонагнетателя - кольцо со специальными направляющими лепестками, которые способны менять свой угол для оптимизации мощности турбины при конкретных нагрузках. Возможность изменения сечения увеличивает отдачу, улучшает отклик мотора и снижает уровень потребления топлива. Максимальный крутящий момент достигается при меньших оборотах и доступен в более широком диапазоне по сравнению с моторами с традиционным нагнетателем.

Одной из первых моделей, получивших двигатель с турбиной с изменяемой геометрией крыльчатки, стал мелкосериный хэтчбек Shelby CSX–VNT 1989 года

Новый 1,5-литровый агрегат будет предлагаться в двух вариантах мощности: 131 и 150 лошадиных сил. Пиковый крутящий момент базового мотора в 200 Нм достигается уже при 1300 оборотах в минуту и доступен вплоть до 4500 оборотов.

Еще одно новшество - этот мотор будет работать по циклу Миллера , в котором впускной клапан остается открытым еще на какое-то время в начале цикла сжатия и закрывается чуть позже, чем на стандартных двигателях. В результате геометрическая степень сжатия увеличилась с 10,5:1 у прежнего двигателя до 12,5:1.

Помимо этого, новая «четверка» получила систему деактивации цилиндров, которая отключает два из них при малых нагрузках, усовершенствованную систему впрыска топлива с повышенным до 350 бар давлением, полностью новую головку блока цилиндров и электронноуправляемую систему охлаждения.

«Дизельгейт» еще не успел отгреметь, а у Audi появилась новая 435-сильная четырехлитровая «восьмерка» с тройным наддувом, которая дебютировала на «заряженном» внедорожнике SQ7. Две традиционные турбины тут работают в паре с компрессором с электрическим приводом. Подобную схему применили на серийном автомобиле впервые.

Компрессор раскручивается 7-киловаттным (9,5 лошадиные силы) электрическим мотором, который разгоняет ротор до 70 тысяч оборотов всего за четверть секунды, позволяя избежать турбоямы. Электродвигатель запитан от отдельной электрической системы с напряжением 48 вольт и блоком литий-ионных аккумуляторов, расположенных под багажником «заряженного» кроссовера.

Сам четырехлитровый мотор V8 - тоже новый. Турбокомпрессоры тут расположены в развале блока цилиндров и работают по двухступенчатой схеме. На малых и средних оборотах система valvelift открывает один из двух выпускных клапанов в каждом цилиндре, раскручивая первую турбину. По мере увеличения нагрузки (2200-2700 оборотов в минуту) электроника открывает второй выпускной клапан, активизируется другой компрессор. Электрический нагнетатель работает в самом «низу».

В результате, четырехлитровый агрегат развивает 435 лошадиных сил, а максимальный крутящий момент в 900 Нм доступен в диапазоне 1000-3250 оборотов в минуту. Мотор, работающий вместе с восьмиступенчатым «автоматом», позволяет семиместному внедорожнику набирать «сотню» за 4,8 секунды. Максимальная скорость ограничена электроникой 250 километрами в час.

Новый мотор Audi в дальнейшем появится и на других моделях концерна Volkswagen, включая новую Porsche Panamera и Cayenne, а также дизельную модификацию Bentley Bentayga.

Еще один «глобальный» двигатель, который сначала дебютирует на Porsche Panamera Turbo и Cayenne Turbo следующего поколения, а впоследствии доберется и до моделей Audi, Bentley и даже Lamborghini. Это новейший четырехлитровый твин-турбо мотор V8, который придет на смену нынешней 4,8-литровой «турбо-восьмерке».

Уменьшение рабочего объема, помимо унификации с другими силовыми установками концерна Volkswagen, позволит флагманским моделям Porsche - Panamera Turbo и Cayenne Turbo - обойти повышенный налог на автомобили с моторами объемом свыше четырех литров, действующий в Китае.

В базовой версии новый двигатель будет развивать 550 лошадиных сил и 770 Нм крутящего момента, что на 30 сил и 70 Нм больше предыдущего агрегата 4.8. При этом в Porsche поговаривают, что на версиях Panamera Turbo S и Cayenne Turbo S он будет выдавать свыше 600 сил и 810 Нм.

Помимо высокой отдачи, новый мотор будет заметно эффективнее предыдущего. А значит, экономичнее. Ведь он получит систему деактивации половины цилиндров при малых нагрузках (в диапазоне от 950 до 3500 оборотов в минуту), что позволит на 30 процентов улучшить топливную экономию.

Твин-турбо «восьмерка» унифицирована с трехлитровым турбомотором V6, разработанным Audi, и создавалась с учетом ее применения как на модульной платформе MLB, так и на шасси MSB. Первая архитектура предназначена для машин с передним и полным приводом (читай, Audi A4, A5, A6 и производные, включая кроссоверы), а вторая - с приводом на задние или на все колеса (используется на больших моделях Porsche и Bentley).

Поэтому, помимо новых Panamera и Cayenne, четырехлитровый мотор пополнит линейку двигателей Audi A6, A8 и Q7 следующих поколений, а также двух моделей Bentley - Bentayga и Continental. Наконец, именно этим мотором, скорее всего, будет оснащаться и кроссовер Lamborghini Urus, который должен отнять у «Бентейги» звание «быстрейшего серийного внедорожника в мире».

Статья взята с третьих рук, но исходно с Эксперта: http://expert.ru/expert/2016/49/dvigatel-energorevolyutsii/

Двигатель внутреннего сгорания (ДВС) с механическим КПД 95% практически не имеет вредных выхлопных газов и способен при расходе топлива три литра на 100 км развивать мощность 300 л. с. А общий КПД чудо-двигателя, работающего на бензине, составляет порядка 60%. Это кажется невероятным, ведь КПД массовых автомобильных бензиновых ДВС не превышает 25%, дизельных - 40%. Этот проект - реально работающий прототип, собранный в «подвале» небольшого мебельного завода. Новые технологии, примененные в этом движке, запатентованы в России, США и даже в Японии. Все попытки зарубежных компаний купить эти разработки патриотом-кулибиным были отвергнуты, хотя предлагались суммы, в 20 раз превышающие стоимость всего его бизнеса. Представляется, что этот проект может создать серьезную конкуренцию электромобилю.

Ротор для аммиака и сварочный трансформатор

Создатель двигателя оказался автором более 50 патентов, в том числе международных. Александр Николаевич Сергеев - разработчик оригинальной технологии сварки роторов для производства аммиака, источников питания сварочной дуги, аэродинамических спойлеров для вазовских автомобилей и еще более 50 изделий, до сих пор применяющихся в шести отраслях промышленности. Свой первый патент на изобретение Сергеев получил, еще будучи студентом, в 1970-х, и был удостоен почетного тогда звания «Молодой ученый года», а через три года, поступив на работу инженером на завод «Азотреммаш» (ныне часть холдинга «Тольяттиазот» - крупнейшего в мире производителя азота), произвел технологическую революцию в отрасли. Разработанная им технология сварки рабочих колес центробежных компрессоров позволила увеличить ресурс работы этих агрегатов в несколько раз и отказаться от поставок аналогичных устройств из США.

Мы впервые в мире сделали цельносварной ротор, - объясняет Александр. - Это основной в производстве аммиака узел - узел сжатия газа до давления свыше 300 атмосфер при гиперзвуковых окружных скоростях рабочих колес компрессоров. По теме сварки магнитоуправляемой дугой у меня порядка пятнадцати авторских. Если вкратце, там, по сути, было сделано открытие по влиянию электромагнитного поля на электропроводность и теплопроводность.

Наработки в области сварки, созданные в рамках химпрома, пригодились в других отраслях. Сергеевым был разработан сварочный трансформатор, по своим характеристикам превышающий те, что продавались на рынке, при этом его стоимость была на 30% ниже, а площадь занимаемого пространства сократилось в пять раз. В 1980-х годах изобретатель хотел предложить свои разработки начальству, однако в стране грянула перестройка, началось кооперативное движение; Сергеев ушел с завода и, прихватив с собой костяк своей команды, организовал предприятие, выпускающее промышленное сварочное оборудование.

Я пришел в госбанк, сказал, что мы хотим кооператив организовать. Говорят: напишите бизнес-план. Я рукой на листочке формата А4 накалякал, прямо при них. Шестьдесят тысяч рублей первый кредит мы взяли. Просто девочка приезжала от банка, проверяла целевое использование, - вспоминает ученый.

От спойлеров для ВАЗов до мебели

В 1999 году Сергеев начал разработки в области химии пластиков. Он основал компанию «Техноком», которая, используя его изобретения, создала спойлеры для новых моделей АвтоВАЗа. Если вкратце, то Сергеев придумал, как сделать пенополиуретан прочным и легким - то, что за многие годы по техзаданиям автогиганта не могли осуществить компании, претендующие на контракт с АвтоВАЗом. В результате получился композиционный материал, выдерживающий механические нагрузки на уровне технической пластмассы. На главный конвейер АвтоВАЗа компания за несколько лет поставила свыше миллиона спойлеров. Сергеев защитил проект в венчурном фонде Самарской области, получив финансирование на закупку оборудования, а также посевные инвестиции в целом на 70 млн рублей. Через три года компания «Техноком» начала изготавливать изделия из пенополиуретана для мебельной отрасли - элементы для оформления фасадов зданий под торговой маркой Modus Decor. Сегодня «Техноком» входит в тройку лидеров этого рынка, в котором, кстати, до прихода тольяттинцев практически безраздельно царил импорт. На вопрос, доволен ли Сергеев своим мебельным бизнесом, я получил неожиданный ответ: «Этот бизнес я запустил только для того, чтобы заработать денег для настоящего дела моей жизни - создания двигателя внутреннего сгорания, работающего на новых принципах». В «подвале» Modus Decor Сергеев уже много лет занимается разработкой нового двигателя, а в этом году построил работающий прототип.

Двигатель мечты

Передо мной был с виду обычный ДВС - двигатель внутреннего сгорания, которые применяются в транспортных средствах, малой энергетике, малой авиации и много где еще. Странным было только то, что, во-первых, он был двухтактным, а во-вторых, никакой дроссельной заслонки в нем я не обнаружил. Движок был подключен к стандартному промышленному газоанализатору, позволяющему с точностью до сотых долей определять состав выхлопных газов и их количественные характеристики - СО, СО2, CH, О2, а также коэффициент избытка воздуха λ - так называемая лямбда. Сергеев запустил двигатель (на бензине), который начал издавать вполне узнаваемые звуки работающего поршневого механизма, а вот газоанализатор стал показывать странные вещи - состав выхлопных газов мало чем отличался от состава обычного воздуха (кроме мизерного количества углеводородов): СО - 0,1%, СО2 - 3%, СН - 250 единиц, и О2 - 18%. Здесь стоит напомнить, что в воздухе, которым мы дышим, кислорода как раз 18% (от 17 до 21%, если быть точным). А в выхлопе даже самых дорогих четырехтактных двигателей самого высокого экологического стандарта содержание газов такое: СО - 0,5%, СО2 - 15%, СН - 220 единиц (без каталитического нейтрализатора), О2 - 0,5%. Лямбда (λ) в новом движке - 2÷5.

Вот смотри, нет дроссельной заслонки, но это двухтактный цикл. Один цилиндр крутит четырехцилиндровую кинематическую схему, - показывает Сергеев на детали движка, наслаждаясь произведенным на меня эффектом. - Вот сейчас закрываю впускной коллектор. Это как бы дроссельная заслонка. Это чтобы показать, что газоанализатор нормально работает. Для специалистов это сразу понятно. Сейчас лямбда начнет появляться. Вот лямбда равна 1,43 - значит, прибор работает. Вот сейчас кислорода меньше и уже тащится СН, тысяча с лишним. Вот открыли, с полным наполнением начал работать. Все: кислород растет, СО падает, СО2 падает. Когда приходят спецы, которые понимают в теме, они просто не верят. Двигатель работает практически на воздухе.

Двигатель из «подвала» тольяттинского мебельщика вовсе не загрязняет атмосферу. При этом расход топлива у него получается каким-то фантастически низким: 2,7–3 л на 100 км при развиваемой мощности 300 л. с. По мощности это ДВС, стоящий, например, в «Инфинити», который жрет минимум 14 л на 100 км. Обеспечиваются такие параметры за счет того, что в камере сгорания топливовоздушная смесь сгорает полностью. А вот как это достигается? Во-первых, двигатель сконструирован по схеме бесшатунного механизма, который инженер Сергей Баландин придумал еще в годы Второй мировой войны. Сталинский ученый не успел завершить свои разработки, так как появилась турбореактивная тяга, а его идеи поршневого ДВС так и не были воплощены в жизнь. Тем не менее интерес к этой схеме среди изобретателей остался. У Баландина было много последователей, но дальше всех в промышленном применении продвинулсяАлексей Вуль . Сергеев же сумел развить технологию до эффективно работающего прототипа и добиться результата. Кроме того, в движке Сергеева использованы изобретенные им принципиально новые способы смесеобразования и сжигания топлива.

Все гениальное просто

Чем интересна схема Баландина? При работе этого двигателя нет бокового давления поршней на стенки цилиндра, - рассказывает Александр Сергеев. - За счет этого механический КПД повышается до 95 процентов. Второе: там можно увеличить линейную скорость поршня. Значит, можно увеличить мощность. До сих пор эту кинематическую схему никто не реализовал в промышленных объемах.

Десять лет назад Сергеев задался вопросом: вот есть древнее устройство, существующее «тысячу лет», - примус. В нем топливо сжигается практически на сто процентов, и никто не угорает. Почему? Потому что в примусе керосин сначала испаряется, переходит из жидкой фазы в газовую и только потом горит. Чтобы сгореть, топливо должно пройти подготовку к химической реакции горения - перейти из жидкой фазы в газовую. Раньше в ДВС был карбюратор, где смесь готовилась. Но все равно это была жидкая фаза. Сейчас сделали непосредственный впрыск, когда форсунки высокого давления впрыскивают топливо прямо в рабочий цилиндр. Однако тоже в жидкой фазе. Иначе в двигателе Сергеева: после газификации топливовоздушной смеси гомогенная смесь поступает в камеру сгорания новой геометрии с глубоким расслоением заряда по плотности. Это обеспечивает концентрацию богатой топливовоздушной смеси в районе электродов свечи зажигания, что обеспечивает ее уверенное поджигание, а после воспламенения смеси сгорает бедная топливовоздушная смесь, обеспечивая практически полное сжигание с минимальной токсичностью отработанных газов. Объединение преимуществ бензиновых и дизельных двигателей, а также бесшатунной кинематической схемы позволило создать поршневой двигатель с фантастическими характеристиками.

«Особое мнение» АвтоВАЗа и «Ростеха»- Я посмотрел, что в мире за последнее время сделали. Американцы придумали поджигать бензин керосином. Гибриды. Но здесь надо еще посмотреть, какая экология при производстве аккумуляторных батарей. А потом - как это все утилизировать. Где эти зарядные станции ставить? И все равно нужен бензиновый двигатель, который будет крутить этот генератор, - справедливо рассуждает ученый.

Свои изобретения наш тольяттинский Кулибин запатентовал, причем не только в России, но и в США и даже в Японии (получить патент в Японии невероятно сложно, об этом знают все технические специалисты в мире). После публикации в федеральном журнале патентов США (обязательная процедура) этот патент был избран из 28 тысяч в сотню «самых интересных», и статью о новых технологиях Сергеева с заголовком «Новое рождение ДВС» напечатал авторитетный американский журнал Science. Сразу после выхода публикации в свет, буквально на следующий день, Сергееву посыпались письма от американских производственных компаний и венчурных фондов; запросы о продаже технологии пришли в том числе от оборонных предприятий, связанных с гигантами Lockheed Martin и DARPA. Большинство предлагали оплатить прилет нашего ученого в Штаты и там провести переговоры, не называя цену, а некоторые сразу шли ва-банк и сумму сделки называли. Самая большая сумма, обозначенная в этих письмах (копии есть в распоряжении «Эксперта»), - 220 млн долларов. Учитывая, что совокупная стоимость всех активов изобретателя не превышает и 10 млн долларов, предложение более чем привлекательное.

Были предложения о сотрудничестве и от японских корпораций. В одном письме указывается, что в Японии принята частно-государственная программа разработки нового двигателя внутреннего сгорания, в которой целью ставится создание ДВС, которые будут на 30% экономичнее и более экологически чистыми (выход СО2 снизить на 20%, СО - на 35%), чем существующие сегодня. На программу выделено 10 млрд долларов, из которых 50% - финансирование от правительства страны. Поставлена цель к 2020 году выйти на демонстрацию работающего прототипа. Как же они все там были расстроены, когда узнали, что в России уже создали такой прототип, причем с характеристиками на порядок выше тех, что заложены в их амбициозной программе. Однако выстроившиеся в очередь покупатели из разных стран все как один получили отказ, а сам Сергеев твердо решил остаться истинным патриотом, найти российских инвесторов.

А вот на АвтоВАЗе - главном предприятии, которое могло бы внедрить разработки в области ДВС, когда Сергеев показал документы и видео своего движка, просто отмахнулись.

Еще в 2009 году главный конструктор ВАЗа Петр Михайлович Прусов хотел созвать всероссийскую конференцию по двигателестроению, чтобы я сделал доклад. Но тогда на завод приехали москвичи с французами, власть тут начала меняться, и все это похерилось. Я показал данные и видео нынешнему руководству завода, но они сказали, что этого не может быть. Они думали, что это фальсификация, - удивляется Сергеев.

В «Ростехе», куда я обратился за комментарием, полтора месяца просто «кормили завтраками». Затем оттуда пришел ответ, но корпорация даже не связалась с Сергеевым. «Макет одноцилиндрового двухтактного двигателя внутреннего сгорания разработки А. Н. Сергеева не применим для продукции Госкорпорации “Ростех”: ОДК занимается разработкой и созданием авиационных, ракетных и газоперекачивающих двигателей. Для беспилотников производства ОПК и Калашникова используются системы, к которым данный двигатель не применим. Двигатель не подходит и к текущим автомобилям производства АвтоВАЗ. В иной ситуации для автомобилей потребуется серьезная техническая доработка конструкции и управляющих систем, помимо этого не проработаны вопросы экологии в связи с двухтактностью цикла». То есть, переводя на человеческий язык, ответ можно расшифровать так: ОДК - Объединенная двигателестроительная корпорация - несмотря на заявленные в уставе цели и задачи развития всего существующего в промышленности спектра технологий двигателестроения, не хочет браться за новое направление, а переделывать конструкции беспилотников и автомобилей под новый двигатель, на разработку которых «Ростех» уже потратил деньги и время, специалисты госкорпорации считают нецелесообразным. Несмотря на то, что эта простая подгонка под основной узел (двигатель) приведет к настоящей технологической и энергетической революции. Про «вопросы экологии в связи с двухтактностью цикла» я вообще лучше промолчу, ибо здесь доблестный «Ростех» просто «спалился» в том, что его специалисты даже не прочитали присланного мной протокола комиссии Самарского университета.

Из ОДК пришло вообще странное письмо, отражающее чудовищную некомпетентность людей из правления госхолдинга. Цитирую: «Предлагаемые диапазоны мощностей (до 300 л. с.) уже сейчас осваиваются ГМЗ “Агат” совместно с ЦИАМом (Центральный институт авиационного приборостроения им. Баранова. -“Эксперт” ) и ОКБ моторостроения…» Хотя любой студент знает из курса теплотехники, что бесшатунная кинематическая схема (схема Баландина) как раз ценна тем, что не имеет ограничений по увеличению мощности двигателя (от тех же 300 л. с. можно легко прыгнуть до 1000 л. с. и больше, если это необходимо), поскольку из-за отсутствия бокового давления на стенки цилиндра линейную скорость поршня можно увеличивать практически до бесконечности. Дальше специалисты ОДК пишут: «Рынок отечественных ЛА с ДВС очень ограничен, возможно, разовьется в ближайшем будущем, но пока он крайне узок». Логика железная… Если кто-то выпустит на мировой рынок, скажем, беспилотник (или небольшой самолет, использующий поршневой двигатель), который расходует в три-четыре (!) раза меньше топлива, чем существующие современные аналоги, и который, соответственно, может автономно летать в несколько раз дольше, догадайтесь, какой истерически сумасшедший спрос будет на него.

Однако рациональное зерно в ответе ОДК все же нашлось. Специалист компании сообщил, что «существующая редакция “Стратегии развития поршневого двигателестроения” предлагает создание центра компетенции по авиационным поршневым двигателям на базе ЦИАМ»; на мой взгляд, это сейчас правильно, потому что ОДК этим ну совсем некогда, да и не на чем (в смысле базы) заниматься, - поэтому разработчикам есть смысл обратиться именно в ЦИАМ. Теперь стала понятна структура компетенций государства в области развития поршневых двигателей. Но обращение в ЦИАМ оказалось бесполезным. Пресс-секретарь института лишь сообщила: «Документы передала специалистам, может быть, с вами свяжутся…»

Адекватные ученые

Сергеев показал разработки одному из основных научных институтов по теме ДВС в России - кафедре тепловых двигателей Самарского национального исследовательского университета им. С. П. Королева. Ее специалисты приехали на мебельный завод буквально на следующий день после получения письма. Делегацию возглавил академик Российской академии транспорта, член-корреспондент Российской академии космонавтики, доктор технических наук, профессор Владимир Бирюк - ученый с мировым именем, который является главным экспертом Ракетно-космической корпорации «Энергия», Роскосмоса, Минпромторга и т. д. В состав комиссии также вошли главный инженер научного центра газодинамических исследований Игорь Ниппард , инженерАлексей Горшкалев и завлабораторией ДВС Самарского университета, кандидат технических наук Дмитрий Сармин . В интервью «Эксперту» Владимир Бирюк рассказал, что был поражен увиденным в Тольятти, но после проверки всех показателей двигателя никаких сомнений не осталось. Выездная комиссия приняла решение срочно заняться этим проектом в приоритетном порядке.

Протокол совместного совещания гласит: «Обсуждали работу рабочего макета одноцилиндрового, двухтактного двигателя внутреннего сгорания с техническими характеристиками и показателями, превышающими существующие в мировом двигателестроении аналоги. Основным отличием данного двигателя является: принципиально новая схема смесеобразования и сжигания топлива, обеспечивающее практически полное сжигание топлива с коэффициентом избытка воздуха на режимах холостого хода и частичных нагрузках в интервале 3 ≤ λ ≤ 5, что обеспечило значительное снижение расхода топлива на этих режимах и снизило токсичность отработанных газов. СО = 0,1%, СН = 250÷350, СО2 = 3÷5%, О2 = 12÷18%. Новые решения смесеобразования и сжигания топлива защищены патентами РФ, США и Японии. Данный двигатель является многотопливным и может работать в режиме холостого хода и частичных нагрузках в двухтактном цикле с двойной продувкой, снижая расход топлива на этих режимах, и двухтактном цикле на мощностных режимах, что позволяет развить максимальную мощность двигателя. Демонстрация и обсуждение работы одноцилиндровой модели представленного ДВС позволяет принять решение: признать целесообразным создание совместной рабочей группы для дальнейшей разработки и изготовления опытного образца двигателя объемом 2 л, мощностью 250÷300 л. с., с крутящим моментом не менее 300 Н·м и массой не более 150 кг, признать целесообразным разработку опытного образца двигателя мощностью 30–35 л. с. при минимальной массе».

Один из ведущих в мире экспертов по теплофизике профессор кафедры компьютерной теплофизики и энергофизического мониторинга Санкт-Петербургского национального исследовательского университета ИТМО доктор технических наукНиколай Пилипенко не поверил в существование двигателя с механическим КПД 95%. В интервью «Эксперту» он заявил: «Такого просто не может быть. Тут какая-то уловка. Иначе это была бы настоящая мировая сенсация на уровне создания атомной бомбы». Опрошенные нами научные светила в сфере теплофизики, теплотехники и поршневого двигателестроения в других странах тоже лишь усмехались в трубку, указывая на существование в мире тысяч всевозможных «революционных» проектов, начиная с вакуумных поездов и заканчивая ионными или плазменными двигателями, но это все «прожекты на бумаге», которые в реальности нереализуемы ввиду либо конструкционных особенностей, либо отсутствия спроса. Однако после предъявления международных патентных удостоверений люди в основном просили дать координаты изобретателя. Профессор Осакского университета Юкио Сакэ , который уже тридцать лет занимается разработками газодинамических систем двигателей для японских автоконцернов, предложил создать совместное российско-японское предприятие для завершения разработок и организации производства двигателей. А ведущий инженер Центра теплотехнического инжиниринга во Франкфурте-на-Майне (ведет разработки по контракту с BMW и Volkswagen) Габриэль Вайнц удивился, что «проект до сих пор не “проглотил” какой-нибудь предприимчивый инвестор» и пригласил Сергеева в Германию для совместной работы и организации международной конференции. Впрочем, этим инвестором, по логике вещей, должно стать государство, поскольку новые двигатели имеют большой потенциал использования в военной технике и вооружении.

Лед тронулся

Пока же государство в своей чудовищной неповоротливости думает, изобретатель Сергеев уже делает следующие шаги. Теперь он вместе со специалистами Самарского университета формирует команду разработчиков для доведения движка до совершенства, внедрения других разработанных им технологий и создания силовых установок для различных задач - автомобили, беспилотники, малая авиация, малая электрогенерация, корабли и т. д. Готовится документация для 35 новых патентов, позволяющих защитить ноу-хау, которые еще только предстоит реализовать в новом двигателе. Понятно, что денег у университета нет и сегодня проекту срочно требуется стратегический инвестор. Разработками Сергеева уже заинтересовалась РКК «Энергия» и компания - разработчик ударных беспилотников для Минобороны.

Массовое внедрение ДВС с качественно более высоким КПД, безусловно, позволит сделать экономику более энергоэффективной. Вы только вдумайтесь: сегодня более 80% энергии в мире производят двигатели внутреннего сгорания. Электроэнергия будет стоить копейки (можно будет автономно отапливать дом электричеством от мини-электростанции по цене в три раза ниже, чем от магистральных сетей), а сама генерация станет доступной даже в глухой тайге. А автомобили? Представьте себе джип с 300-сильным движком, который расходует лишь три литра горючего на 100 км, или обычную легковушку, буквально «нюхающую» топливо по 0,5 литра на 100 км. При этом заливать в бак можно будет не только бензин определенного октанового числа, а буквально все, что горит: нет поблизости заправки - залил бутылку водки и доехал.

Заявка на сенсацию

Механический КПД предлагаемого двигателя в 95% достигается за счет использования кинематической схемы бесшатунного механизма (механизма Баландина), при которой значительно уменьшаются потери на преодоление сил трения за счет исключения бокового давления поршня на стенки рабочего цилиндра. У лучших ДВС с кривошипно-шатунным механизмом механический КПД остается на уровне 90%.

Топливная эффективность двигателя Александра Сергеева достигает 98% за счет организации нового запатентованного процесса смесеобразования и сжигания топлива, обеспечивающего полное сжигание топлива в рабочем цилиндре.

Термодинамический КПД предлагаемой разработки составляет 60–65% за счет организации работы бензинового двигателя в двухтактном цикле с полным наполнением рабочего цилиндра атмосферным воздухом на всех режимах его работы, при степени сжатия ε = 14÷20 без детонации.

Разработанный двигатель устойчиво работает в двухтактном цикле с двойной продувкой, в режимах холостого хода и частичной нагрузки (основные режимы работы двигателя в городском режиме и движении по трассе, что составляет ≈80÷85% работы ДВС), то есть один ход рабочий, следующий продувочный, что идеально готовит рабочий цилиндр к следующему рабочему циклу. Это позволяет дополнительно уменьшить расход топлива и обеспечить оптимальный температурный режим работы двигателя, что также способствует повышению теплового (термодинамического) КПД двигателя.