Где производят автомобили форд. Гигант - история генри форда

Самолёт – воздушное судно, без которого сегодня представить перемещение людей и грузов на большие расстояния невозможно. Разработка конструкции современного самолета, а также создание отдельных его элементов представляется важной и ответственной задачей. К этой работе допускают только высококвалифицированных инженеров, профильных специалистов, так как небольшая ошибка в расчётах или производственный брак приведут к фатальным последствиям для пилотов и пассажиров. Не представляет секрет, что любой самолёт имеет фюзеляж, несущие крылья, силовой агрегат, систему разнонаправленного управления и взлетно-посадочные устройства.

Ниже изложенная информация об особенностях устройства составных частей самолёта будет интересна для взрослых и детей, занимающихся конструкторской разработкой моделей летательных аппаратов, а также отдельных элементов.

Фюзеляж самолёта

Основной частью самолета является фюзеляж. На нем закрепляются остальные конструктивные элементы: крылья, хвост с оперением, шасси, а внутри размещается кабина управления, технические коммуникации, пассажиры, грузы и экипаж воздушного судна. Корпус самолёта собирается из продольных и поперечных силовых элементов, с последующей обшивкой металлом (в легкомоторных версиях – фанерой или пластиком).

Требования при проектировании фюзеляжа самолёта предъявляется к весу конструкции и максимальным характеристикам прочности. Добиться этого позволяет использование следующих принципов:

  1. Корпус фюзеляжа самолёта выполняется в форме, снижающей лобовое сопротивление воздушным массам и способствующей возникновению подъемной силы. Объем, габариты самолёта должны быть пропорционально взвешены;
  2. При проектировании предусматривают максимально плотную компоновку обшивки и силовых элементов корпуса для увеличения полезного объема фюзеляжа;
  3. Сосредотачивают внимание на простоте и надежности крепления крыловых сегментов, взлётно-посадочного оборудования, силовой установки;
  4. Места крепления грузов, размещения пассажиров, расходных материалов должны обеспечивать надёжное крепление и баланс самолёта при различных условиях эксплуатации;

  1. Место размещения экипажа должно предоставлять условия комфортного управления самолётом, доступ к основным приборам навигации и управления при экстремальных ситуациях;
  2. В период обслуживания самолёта предусмотрена возможность беспрепятственно провести диагностику и ремонт вышедших из строя узлов и агрегатов.

Прочность корпуса самолёта обязана обеспечивать противодействие нагрузкам при различных полётных условиях, в том числе:

  • нагрузки в местах крепления основных элементов (крылья, хвост, шасси) в режимах взлёта и приземления;
  • в полётный период выдерживать аэродинамическую нагрузку, с учётом инерционных сил веса самолёта, работы агрегатов, функционирования оборудования;
  • перепады давления в герметически ограниченных отделах самолёта, постоянно возникающие при лётных перегрузках.

К основным типам конструкции корпуса самолёта относят плоский, одно,- и двухэтажный, широкий и узкий фюзеляж. Положительно зарекомендовали себя и используются фюзеляжи балочного типа, включающие варианты компоновки, которые носят название:

  1. Обшивочные – конструкция исключает продольно расположенные сегменты, усиление происходит за счёт шпангоутов;
  2. Лонжеронные – элемент имеет значительные габариты, и непосредственная нагрузка ложится именно на него;
  3. Стрингерные – имеют оригинальную форму, площадь и сечение меньше, чем в лонжеронном варианте.

Важно! Равномерное распределение нагрузки на все части самолёта осуществляется за счёт внутреннего каркаса фюзеляжа, который представлен соединением различных силовых элементов по всей длине конструкции.

Конструкция крыла

Крыло – один из основных конструктивных элементов самолёта, обеспечивающий создание подъёмной силы для полёта и маневрирования в воздушных массах. Крылья используют для размещения взлётно-посадочных устройств, силового агрегата, топлива и навесного оборудования. От правильного сочетания веса, прочности, жёсткости конструкции, аэродинамики, качества изготовления зависят эксплуатационные и лётные характеристики самолёта.

Основными частями крыла называется следующий перечень элементов:

  1. Корпус, сформированный из лонжеронов, стрингеров, нервюров, обшивки;
  2. Предкрылки и закрылки, обеспечивающие плавный взлёт и посадку;
  3. Интерцепторы и элероны – посредством них осуществляется управление самолётом в воздушном пространстве;
  4. Щитки тормозные, предназначенные для уменьшения скорости движения во время посадки;
  5. Пилоны, необходимые для крепления силовых агрегатов.

Конструктивно-силовая схема крыла (наличие и расположение деталей при нагрузочном воздействии) должна обеспечивать устойчивое противодействие силам кручения, сдвига и изгиба изделия. К ней относятся продольные, поперечные элементы, а также внешняя обшивка.

  1. К поперечным элементам относят нервюры;
  2. Продольный элемент представлен лонжеронами, которые могут быть в виде монолитной балки и представлять ферму. Располагаются по всему объёму внутренней части крыла. Участвуют в придании жёсткости конструкции, при воздействии сгибающей и поперечной силы на всех этапах полёта;
  3. Стрингер также относят к продольным элементам. Его размещение – вдоль крыла по всему размаху. Работает как компенсатор осевого напряжения нагрузок изгиба крыла;
  4. Нервюры – элемент поперечного размещения. В конструкции представлены фермами и тонкими балками. Придаёт профиль крылу. Обеспечивает жесткость поверхности при распределении равномерной нагрузки во время создания полётной воздушной подушки, а также крепления силового агрегата;
  5. Обшивка придаёт форму крылу, обеспечивая максимальную аэродинамическую подъёмную силу. Вместе с другими элементами конструкции увеличивает жёсткость крыла и компенсирует действие внешних нагрузок.

Классификация крыльев самолёта осуществляется в зависимости от конструктивных особенностей и степени работы наружной обшивки, в том числе:

  1. Лонжеронного типа. Характеризуются незначительной толщиной обшивки, образующей замкнутый контур с поверхностью лонжеронов.
  2. Моноблочного типа. Основная внешняя нагрузка распределяется по поверхности толстой обшивки, закреплённой массивным набором стрингеров. Обшивка может быть монолитной или состоять из нескольких слоёв.

Важно! Стыковка частей крыльев, последующее их крепление должны обеспечивать передачу, распределение изгибающего и крутящего моментов, возникающих при различных режимах эксплуатации.

Авиадвигатели

Благодаря постоянному совершенствованию авиационных силовых агрегатов продолжается развитие современного самолётостроения. Первые полёты не могли быть длительными и совершались исключительно с одним пилотом именно потому, что не существовало мощных двигателей, способных развить необходимую тяговую силу. За весь прошедший период авиацией использовались следующие типы двигателей самолёта:

  1. Паровые. Принцип работы заключался в преобразовании энергии пара в поступательное движение, передающееся на винт самолёта. Из-за низкого коэффициента полезного действия использовался непродолжительное время на первых авиамоделях;
  2. Поршневые – стандартные двигатели с внутренним сгоранием топлива и передачей крутящего момента на винты. Доступность изготовления из современных материалов позволяет их использование до настоящего времени на отдельных моделях самолётов. КПД представлен не более 55.0%, но высокая надежность и неприхотливость в обслуживании делают двигатель привлекательным;

  1. Реактивные. Принцип действия основан на преобразовании энергии интенсивного сгорания авиационного топлива в необходимую для полёта тягу. Сегодня такой тип двигателей наиболее востребован в авиастроительстве;
  2. Газотурбинные. Работают по принципу пограничного нагрева и сжатия газа сгорания топлива, направленного на вращение турбинного агрегата. Получили широкое распространение в авиации военного назначения. Используются в самолётах типа Су-27, МиГ-29, F-22, F-35;
  3. Турбовинтовые. Один из вариантов газотурбинных двигателей. Но полученная при работе энергия преобразовывается в приводную для винта самолёта. Небольшая её часть используется для образования реактивной толкающей струи. Применяют, в основном, в гражданской авиации;
  4. Турбовентиляторные. Характеризуются высоким КПД. Применяемая технология нагнетания дополнительного воздуха для полного сгорания топлива обеспечивает максимальную эффективность работы и высокую экологическую безопасность. Такие двигатели нашли своё применение при создании больших авиалайнеров.

Важно! Перечень двигателей, разрабатываемых авиаконструкторами, вышеуказанным перечнем не ограничивается. В разное время неоднократно принимались попытки создавать различные вариации силовых агрегатов. В прошлом веке даже велись работы по конструированию атомных двигателей в интересах авиации. Опытные образцы были опробованы в СССР (ТУ-95, АН-22) и США (Convair NB-36H), но были сняты с испытания в связи с высокой экологической опасностью при авиационных катастрофах.

Органы управления и сигнализации

Комплекс бортового оборудования, командные и исполнительные устройства самолёта называют органами управления. Команды подаются из пилотной кабины, а выполняются элементами плоскости крыла, оперением хвоста. На разных типах самолётов используются различные типы систем управления: ручная, полуавтоматическая и полностью автоматизированная.

Органы управления, независимо от типа системы управления, разделяют следующим образом:

  1. Основное управление, включающее в себя действия, отвечающие за регулировку лётных режимов, восстановление продольного баланса самолёта в заранее заданных параметров, они включают:
  • рычаги, непосредственно управляемые пилотом (штурвал, рули высоты, горизонта, командные панели);
  • коммуникации для соединения управляющих рычагов с элементами исполнительных механизмов;
  • непосредственные исполняющие устройства (элероны, стабилизаторы, сполерные системы, закрылки, предкрылки).
  1. Дополнительное управление, используемое при взлётном или посадочном режимах.

При применении ручного или полуавтоматического управления воздушным судном пилота можно считать неотъемлемой частью системы. Только он может проводить сбор и анализ информации о положении самолёта, нагрузочных показателях, соответствии направления полёта с плановыми данными, принимать соответствующее обстановке решение.

Для получения объективной информации о лётной обстановке, состоянии узлов самолёта пилот использует группы приборов, назовем основные:

  1. Пилотажные и используемые для навигационных целей. Определяют координаты, горизонтальное и вертикальное положение, скорость, линейные отклонения. Контролируют угол атаки по отношению к встречному потоку воздуха, работу гироскопических устройств и многие не менее значимые параметры полёта. На современных моделях самолётов объединены в единый пилотажно-навигационный комплекс;
  2. Для контроля работы силового агрегата. Обеспечивают пилота информацией о температуре и давлении масла и авиационного топлива, расход рабочей смеси, количество оборотов коленчатых валов, вибрационный показатель (тахометры, датчики, термометры и подобное);
  3. Для наблюдения за функционированием дополнительного оборудования и авиационных систем. Включают в себя комплекс измерительных приборов, элементы которого размещены практически во всех конструктивных частях самолёта (манометры, указателя расходования воздуха, перепада давления в герметических закрытых кабинах, положения закрылков, стабилизирующих устройств и тому подобное);
  4. Для оценки состояния окружающей атмосферы. Основными измеряемыми параметрами являются температура наружного воздуха, состояние атмосферного давления, влажность, скоростные показатели перемещения воздушных масс. Используются специальные барометры и другие адаптированные измерительные приборы.

Важно! Измерительные приборы, используемые для мониторинга состояния машины и внешней среды, специально разработаны и адаптированы для сложных условий эксплуатации.

Взлётно-посадочные системы 2280

Взлёт и посадку считают ответственными периодами при эксплуатации самолёта. В этот период возникают максимальные нагрузки на всю конструкцию. Гарантировать приемлемый разгон для поднятия в небо и мягкое касание поверхности посадочной полосы могут только надёжно сконструированные стойки шасси. В полете они служат дополнительным элементом придания жесткости крыльям.

Конструкция наиболее распространённых моделей шасси представлена следующими элементами:

  • подкос складной, компенсирующий лотовые нагрузки;
  • амортизатор (группа), обеспечивает плавность хода самолёта при движении по взлетно-посадочной полосе, компенсирует удары во время контакта с землёй, может устанавливаться в комплекте с демпферами-стабилизаторами;
  • раскосы, выполняющие роль усилителя жесткости конструкции, могут называться стержнями, располагаются диагонально по отношению к стойке;
  • траверсы, крепящиеся к конструкции фюзеляжа и крыльям стойки шасси;
  • механизм ориентирования – для управления направлением движения на полосе;
  • замочные системы, обеспечивающие крепление стойки в необходимом положении;
  • цилиндры, предназначенные для выпуска и убирания шасси.

Сколько колес размещено у самолета? Количество колёс определяется в зависимости от модели, веса и назначения воздушного судна. Наиболее распространённым считают размещение двух основных стоек с двумя колёсами. Более тяжёлые модели – трёх стоечные (размещены под носовой частью и крыльях), четырёх стоечные – две основные и две дополнительные опорные.

Видео

Описанное устройство самолета даёт лишь общее представление об основных конструктивных составляющих, позволяет определить степень важности каждого элемента при эксплуатации воздушного судна. Дальнейшее изучение требует глубокой инженерной подготовки, наличия специальных знаний аэродинамики, сопротивления материалов, гидравлики и электрооборудования. На производственных предприятиях авиастроения этими вопросами занимаются люди, прошедшие обучение и специальную подготовку. Самостоятельно изучить все этапы создания самолёта можно, только для этого следует запастись терпением и быть готовым к получению новых знаний.

Монокок

Моноко́к

(фр. monocoque) тип корпуса, конструкции самолета, характеризующийся жесткой обшивкой, подкрепленной поперечными и продольными наборами - каркасом.

Новый словарь иностранных слов.- by EdwART, , 2009 .

Монокок

[фр. monocoque ] – одна из основных частей конструкции самолёта – хорошо обтекаемая пустотелая балка с жёсткой деревянной или металлический обшивкой, к которой крепятся крылья, хвостовое оперение, двигатель, шасси и др.

Большой словарь иностранных слов.- Издательство «ИДДК» , 2007 .

Монокок

а, м. (фр. monocoque греч. mоnоs один + фр. coque корпус).
ав. Тип корпуса самолета, характеризующийся жесткой обшивкой с использованием поперечных и продольных крепежных элементов, образующих каркас.

Толковый словарь иностранных слов Л. П. Крысина.- М: Русский язык , 1998 .


Синонимы :

Смотреть что такое "монокок" в других словарях:

    монокок - а, м. monocoque adj. Монокок. Тип самолет, который представляют собой монолитную (цельную), составляющую как бы одно целое скорлупу, склеенную из полос фанеры в виде сигары. 1925. Вейгелин Сл. авиа. Что такое фюзеляж типа монокок? Фюзеляж (корпус … Исторический словарь галлицизмов русского языка

    - (английский, французкий monocoque, от греческого monos один, единый и французский coque, буквально скорлупа, оболочка) конструкция фюзеляжа или его хвостовой балки, мотогондолы и т. п. круглого, овального или другого сечения, состоящая из толстой … Энциклопедия техники

    Сущ., кол во синонимов: 1 балка (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    LFG Roland C.II, Германия, 1916 один из первых самолётов с фюзеляжем монокок в чистом виде … Википедия

    монокок - монок ок, а (авиа) … Русский орфографический словарь

    монокок - (2 м); мн. моноко/ки, Р. моноко/ков … Орфографический словарь русского языка

Обшивка образует внешнюю поверхность крыла. От качества поверхности крыла в определенной степени зависят его аэродинамические характернее тики. В современном самолетостроении преимущественное распространение получила жесткая металлическая обшивка, как наиболее полно удовлетворяющая требованиям аэродинамики, прочности, жесткости м массы. Металлическая обшивка чаще всего выполняется из листов. Толщина ее колеблется от 0,5 мм в очень мало нагруженных местах у конца крыла до 4…6 мм и даже больше в сильно нагруженных местах в корневых сечениях.

Наибольшее распространение на современных самолетах получила обшивка из высокопрочных алюминиевых сплавов. На самолетах, летающих на больших сверхзвуковых скоростях (М>2), применяется обшивка из жаропрочных сталей и титановых сплавов, не теряющая своих механических свойств при повышенных температурах в условиях аэродинамического нагрева конструкции.

Соединение листов обшивки друг с другом может производиться внахлестку, внахлестку со снятой кромкой, внахлестку с подсечкой и встык. Наиболее простым является соединение внахлестку, но оно вызывает наибольшее аэродинамическое сопротивление. Для уменьшения сопротивления применяют стык внахлестку со снятой кромкой и стык внахлестку с подсечкой.

Последний стык может производиться только для тонких листов толщиной в 0,5…1 мм. Наилучшим в аэродинамическом отношении и получившим по этому наибольшее распространение на современных самолетах является соединение встык, хотя здесь и приходится ставить как минимум двух рядный заклепочный шов, тогда как в других схемах можно обойтись и однорядным швом Рядность шва определяется действующими нагрузками.

Стыки обшивки осуществляются по элементам каркаса: лонжеронам, стрингерам и нервюрам. В настоящее время для крепления обшивки применяется потайная клепка. Отверстия на наружной поверхности зенкуются под закладную головку потайной заклепки. При клепке очень тонких листов толщиной 0,5…0,6 мм отверстия под закладную головку заклепки могут подштамповываться. В этом случае подштамповываются или зенкуются отверстия и в элементах тех деталей, к которым приклепывается такая обшивка.

На современных самолетах широко применяется слоистая обшивка, состоящая из двух несущих слоев, соединенных между собой легким заполнителем. Несущие слои обшивки изготавливаются чаще всего из алюминиевых листов. Заполнитель может быть сотовым, пористым или выполняться из гофрированного листа. Сотовый заполнитель изготавливается из металлической фольги толщиной 0,03…0,02 мм. Ленты фольги гофрируются и соединяются между собой путем склейки, пайки или точечной сварки.

Вид сотов зависит от формы гофра. Сотовый заполнитель может изготавливаться и из гофрированных пластмассовых лент, склеиваемых между, собой. Пористый заполнитель изготавливается из пористых пластмасс, имеющих малую плотность. Обшивка с.заполнителем из гофрированного листа хорошо воспринимает нагрузки, направление которых совпадает с направлением гофра.

Несущие листы-обшивки приклеиваются к заполнителю, а металлические листы могут и припаиваться к металлическому заполнителю. На крыльях сверхзвуковых самолетов, подверженных большому аэродинамическому нагреву, несущие слои обшивки могут изготавливаться из титановых листов или из листов жаропрочной стали, а сотовый заполнитель — из фольги этого же материала.

Слоистая обшивка имеет целый ряд преимуществ в сравнении с однослойной. Слоистая обшивка имеет большую поперечную жесткость, а следовательно, и высокие критические напряжения. Так, при толщине несущего слоя 5/2 = 1 мм и при h = 10 мм, это отношение равно 75, а при h = 20 мм — 300. Примерно в таком же отношении повышается и поперечная жесткость. По этой причине слоистая обшивка не нуждается в частом стрингерном наборе, позволяет значительно уменьшить чисел нервюр.

Крыло со слоистой обшивкой может оказаться легче крыла с однослойной обшивкой, подкрепленной стрингерами. Качество поверхности крыша со слоистой обшивкой из-за отсутствия заклепочных швов получается более высоким. Слоистая обшивка обладает хорошими теплоизоляционными свойствами, что делает выгодным ее применение на подверженных большому аэродинамическому нагреву крыльях сверхзвуковых самолетов, внутренние объемы которые заняты горючим.

Но слоистая обшивка имеет и большие недостатки. Технология изготовления слоистой обшивки сложна, сложен контроль качества склейки или припайки несущих слоев к заполнителю, затруднен ремонт обшивки. Большие трудности встречаются при осуществлении стыков частей слоистой обшивки и стыка ее с элементами силового набора крыла.

В стыке необходимо осуществить соединение не только сильно нагруженных несущих слоев обшивки, но и заполнителя, который обеспечивает совместную их работу. Стык панелей обшивки производится по специальным окантовкам. Окантовка приклеивается или припаивается к несущим слоям обшивки и к заполнителю. Соединение панелей, осуществляется при помощи винтов с анкерными, гайками или болтов.

Стык обшивки с элементами силового набора крыла производится также с использованием окантовок. С целью уменьшения массы слоистой обшивки следует стремиться к сокращению количества стыков. Если из конструктивных и технологических соображений можно изготовлять длинные панели обшивки, превышающие длину, листов, идущих на несущие ее слои, то сначала соединяют накладками несущие слои при помощи склейки или пайки, а затем соединяют их с заполнителем.

В моноблочных крыльях современных скоростных самолетов широкое применение находит обшивка из монолитных панелей. В таком крыле почти все нагрузки воспринимает обшивка и масса ее составляет основную часть массы крыла. Применение монолитной обшивки позволяет снизить массу крыла благодаря соответствию размеров сечений действующим нагрузкам и значительно меньшему, чем в панелях с листовой обшивкой, количеству соединений.

Крылья, выполненные из монолитных панелей, обладают повышенной жесткостью на кручение, что благоприятно с точки зрения аэроупругости. Однако монолитные панели в сравнении со сборными имеют и ряд недостатков: большая трудоемкость изготовления, значительный отход материала, высокая стоимость, трудность ремонта, худшие характеристики усталостной прочности. Монолитные панели изготовляются фрезерованием из плит, прессованием; прокаткой, горячей штамповкой и литьем. Плиты, из которых изготовляются фрезерованием панели, получаются горячей прокаткой или ковкой.

Панели сложной конфигурации фрезеруют на специальных копировально-фрезерных станках и станках с программным управлением. Панели более простой конфигурации можно изготовлять и с помощью химического фрезерования. Криволинейные панели получаются либо фрезерованием плоской панели с последующей гибкой, либо приданием плите необходимой кривизны свободной ковкой с последующим фрезерованием по требуемому контуру.

Прессованием изготовляются панели постоянного сечения параллельным продольным набором. После, термообработки панель подвергается механической обработке, формовке и окончательной доводке по обводу. Прокаткой можно получать и панели вафельного типа. Перед прокаткой заготовку и матрицу нагревают до температуры горячей штамповки.

Дальнейшая обработка панели производится так же, как и обработка прессованной панели. При горячей штамповке панелей продольный и поперечный набор и толщина панели могут иметь переменное по длине сечение, форма поперечного сечения ребер трапециевидная. Так как штамповка не позволяет получить требуемую точность размеров ребер и толщины обшивки, необходима калибровка панелей либо дополнительная механическая обработка.

Изготовление панелей литьем позволяет получить конструкцию со сложным силовым набором и с обшивкой значительно меньшей толщины, чем при других способах получения панелей. Панели, изготовленные литьем, требуют меньшего объема механической обработки. Каждый из способов изготовления панелей имеет свои преимущества и недостатки.

Преимуществами панелей, изготовленных фрезерованием из плит, являются возможность получения панелей сложной конфигурации с переменными сечениями, относительно высокая точность и чистота поверхностей сравнительная простота и дешевизна применяемой оснастки; К недостаткам следует отнести большой отход материала (до-90%).высокую трудоемкость изготовления и худшие по сравнению со штампованными панелями механические свойства. Преимуществами прессованных панелей являются их высокие механические свойства, малый отход материала и меньшая по сравнению с горячей штамповкой мощность оборудования.

Недостатком является ограниченность форм и размеров панелей. К преимуществам панелей, полученных прокаткой, следует отнести возможность получения значительно меньшей, чем у прессованных панелей, толщины обшивки (до 1 мм и даже менее), а в сравнении с горячее штампованными панелями — меньшую мощность оборудования и сравнительную простоту, а следовательно, и меньшую стоимость оснастки. Недостатком горячекатаных панелей является ограниченность геометрических форм в сравнении со штампованными панелями.

Горячее штампованные панели обладают почти такой же высокой прочностью, как и прессованные панели. При штамповке панелей обеспечивается требуемое изменение площади сечения ребер и толщины обшивки, получается малый отход материала. Крупным недостатком этого способа изготовления панелей является большая мощность оборудования.

Так, для изготовления панели из алюминиевых сплавов требуется усилие в 300000 Н на один квадратный метр. Поэтому размеры штампованных панелей ограничены. Большая трудоемкость и длительность цикла изготовления штампов и невозможность получить требуемую точность размеров ребер и толщины обшивки без дополнительной обработки также являются недостатками этого способа изготовления панелей.

Преимущества изготовления панелей литьем состоят в возможности получения больших по размерам панелей с требуемым, силовым набором, тонкой обшивкой и необходимым с точки зрения прочности изменением площади сечений по длине. К достоинствам этого способа изготовления панелей следует отнести также малый отход материала, значительно большую производительность труда и малую трудоемкость изготовления оснастки. Основной недостаток литых панелей — худшие механические характеристики.

Начнем с моих странных ассоциаций 🙂 .

Думаю, что очень многие люди возрастом старше среднего (может и помоложе тоже) помнят старый детский фильм, снятый по книге Л.И.Лагина «Старик Хоттабыч». Ни в кино, ни в книжке конечно ничего не говорится о конструктивно-силовых схемах самолетов:-), однако определенные ассоциации у меня все же в голове обозначились.

Хоттабыч тогда «наколдовал» очень красивый телефон из цельного куска мрамора. Забавно, однако работать такой аппарат именно по причине «мраморности» естественно не мог, хотя и выглядел роскошно.

Похожесть момента заключается в том, что ведь и самолет можно сделать из «цельного куска чего-нибудь ». Однако, при этом он так же, как неработающий мраморный телефон, вряд ли сможет выполнять какие-либо полезные функции. Очень вероятно, что и летать он тоже не сможет.

Это только небольшие и сильно упрощенные модели самолетов времен того же фильма мальчишки (и я в их числе:-)) делали из цельных деревянных дощечек. Летали они неплохо, но это были всего лишь модели. Полет ради самого полета.

Действительность .

Любой самолет, от простейшего кукурузника до современного дальнемагистрального лайнера или скоростного истребителя, – это есть летательный аппарат тяжелее воздуха на службе у человека. Исходя из такого определения, он должен обладать несколькими, так сказать, фундаментальными качествами.

Это, во-первых , хорошие аэродинамические свойства, в основе своей означающие достаточную (лучше побольше:-)) и минимальное аэродинамическое сопротивление. Во-вторых , достаточная возможность для самолета уверенно нести не только самого себя со всеми своими агрегатами и системами, но и полезную нагрузку в виде различных грузов, пассажиров или же вооружения.

При этом как полезная нагрузка, так и все собственно самолетное оборудование должно быть размещено так, чтобы максимально возможно не ухудшать первое качество.

Самолет в процессе эксплуатации находится под действием различных силовых факторов. Это силы аэродинамические, возникающие в полете, массовые нагрузки под действием собственного веса элементов, а также усилия от устройств, агрегатов и грузов внутри самолета и так или иначе подвешенных снаружи.

А посему, третьим необходимым качеством должна быть достаточная прочность конструкции и ее жесткость, обеспечивающие безопасную и уверенную эксплуатацию летательного аппарата как на различных режимах полета, так и на земле. При этом она должна вступать в наименее возможное противоречие с первыми двумя качествами.

Ну, и последнее (но отнюдь не по значимости!) очень важное свойство. Конструкция самолета при всех условиях хорошей вместимости, высокой прочности и отличных летных характеристик должна обладать по возможности минимальной массой .

Все эти свойства и качества так или иначе влияют друг на друга и учитываются при выборе силовых схем и компоновки летательного аппарата и его основных частей. К основным, как известно, относятся и фюзеляж. Вот о нем и его возможных конструктивно-силовых схемах и поговорим чуть подробнее.

Фюзеляж .

Этот элемент является в некотором роде функциональным центром всей конструкции самолета, собирая ее части воедино. Он воспринимает все типы вышеуказанных силовых воздействий, усилия от присоединенных к нему крыла, оперения и агрегатов, а также от избыточного внутреннего давления воздуха.

Распределение нагрузок на весь фюзеляж и его конструктивные элементы изучает, в частности, раздел всем известного сопромата – строительная механика . Интересная наука, насколько простая, настолько же и сложная. Без некоторых ее специфических терминов нам здесь не обойтись, хотя, конечно, никаких сложностей не будет, потому как не наш формат 🙂 …

Существует несколько конструктивно-силовых схем фюзеляжа.

Ферменный тип .

На заре развития авиации, в предвоенные и военные годы (1-я и 2-я мировая война) достаточно широко был распространен ферменный тип конструктивно-силовой схемы . Фюзеляж сам по себе представлял пространственную ферму жесткого или же так называемого жестко-расчалочного типа. Силовые элементы такой конструкции – это стойки, лонжероны, раскосы, расчалки, распорки, различные расчалочные ленты и ферменные пояса.

Элементы ферменного каркаса фюзеляжа.

На первых «этажерках» (например, самолетах типа «Фарман») он вообще не был похож на фюзеляж в общепринятом сейчас понимании. Простая безобшивочная ферма для соединения всех частей аэроплана воедино в определенном порядке. Материалом для нее служило дерево.

Но в дальнейшем с ростом скоростей и нагрузок такой фюзеляж видоизменялся. Появилась необходимость в обшивке. В качестве таковой достаточно широко применялось техническое текстильное полотно , на некоторых конструкциях даже вплоть до начала 60-х годов.

Техническая ткань ПЕРКАЛЬ.

Такое полотно представляет из себя хлопчато-бумажную ткань повышенной прочности. Наиболее известным его видом является перкаль . Области ее применения на самом деле достаточно широки (в зависимости от толщины). Она до сих пор, например, применяется для изготовления постельного белья класса «люкс». В техническом же плане ее еще в конце 18-го века начали использовать при изготовлении корабельных парусов.

В этой области она применяется и по сей день, а в первой половине 20-го века использовалась в качестве внешней обшивки самолетов. При этом перкаль пропитывали специальными лаками (типа эмалита), что придавало ей определенную влагостойкость, а также влаго- и воздухонепроницаемость.

Ткань АСТ-100.

Две любопытные детали. 1.Слово «перкаль » в русском языке женского рода (ткань), но применительно, в частности, к авиации распространено употребление его в мужском роде. То есть перкаль – «он». 2. Перкаль в свое время получил смешное, но очень меткое прозвище «детская пеленка авиации».

Среди технических тканей, применяемых в СССР в авиастроении, помимо перкаля достаточно широко использовались (и используются при необходимости) ткани АСТ-100 , АМ-100 , АМ-93 , имеющие улучшенные характеристики по сравнению с перкалем, хотя суть, в общем-то, оставалась той же.

В качестве фюзеляжной обшивки также применялось дерево, в облегченном варианте, конечно. Это мог быть, например, клеенный деревянный шпон или фанера малых толщин, иногда для некоторых элементов конструкции бакелитовая (дельта-древесина).

Недостатки .

Однако, ферменная конструктивно-силовая схема имела недостатки, которые в процессе довольно бурного развития авиации в конечном итоге все-таки отодвинули ее на задний план.

Обшивка таких фюзеляжей, иначе еще называемая «мягкой», конечно же была не всегда достаточно прочной. Но главное в том, что такая обшивка не работает, как силовой элемент в комплексе с ферменной конструкцией и не включена в силовую схему фюзеляжа (неработающая обшивка).

Она воспринимает только местные аэродинамические нагрузки с частичной передачей их на ферменный каркас, то есть является дополнительным элементом конструкции, обладающим ощутимой добавочной (лишней) массой, но не делающей вклада в общую силовую работу.

В общем-то, основной ее задачей является формирование более-менее обтекаемых аэродинамических поверхностей, то есть по сути уменьшение лобового сопротивления с возможной попыткой образовать некоторые замкнутые внутренние полости в фюзеляже, которым можно было бы найти полезное применение.

Мягкая обшивка самолета Sopwith Pup.

Кроме того, приемлемой долговечностью и сохранностью в процессе эксплуатации под действием атмосферных факторов мягкая обшивка тоже не отличалась. Особенно это касалось полотна. И, если военные самолеты не обладали большим сроком службы во многом из-за специфики их применения, то набиравшая обороты гражданская и транспортная авиация однозначно требовала аппараты с более длительным сроком использования.

Да и попытка использовать внутренние полости тоже была малоэффективна. В пространственной ферме достаточно сложно компоновать грузы и внутреннее оборудование из-за неизбежного наличия подкосов, растяжек и др., что, конечно, делает практически невозможным нынешнее применение таких фюзеляжей на большинстве «серьезных» самолетов, за исключением отдельных моделей легкомоторной или спортивной авиации.

«Металлизация… »

В стремлении справиться с этими и другими недостатками и как-то улучшить положение, появились опыты с применением в конструкции самолетов других материалов. Взгляды некоторых «продвинутых» изобретателей обратились к металлу, а конкретно к стали . Каркасы ферменных фюзеляжей все чаще выполнялись из стальных труб или открытых профилей, обычно с применением сварки.

Самолет REP 1.

Первым самолетом со стальным ферменным фюзеляжем считается самолет француза Роберта Эсно-Пельтри (Robert Esnault-Pelterie) REP-1 . Остальная силовая конструкция этого аэроплана была деревянной, а обшивка полотняной. Самолет полетел в ноябре 1907 года. Летал он медленно (около 80 км/ч) и недалеко – порядка нескольких сотен метров.

В середине 20-х годов, когда самолеты уже, можно сказать, научились летать, стальных ферменных каркасов строилось уже больше, чем деревянных. При этом обшивка чаще всего была все еще полотняная или фанерная. Да и в качестве материала для дополнительных силовых элементов частенько использовалось дерево.

Но уже в начале 1910-х годов строились первые цельнометаллические самолеты. Как в конструкции, так и в материалах существовало определенное разнообразие, несмотря на единичные, по сути дела, экземпляры таких летательных аппаратов.

Не все из них сумели подняться в небо. Некоторые не сделали этого никогда, некоторые не с первого раза, а только после переделок. Главная причина тому была одна – большая масса . Ведь самолеты такого типа строились тогда практически наугад.

Например, первым реально полетевшим самолетом, в котором каркас фюзеляжа, крыла и обшивка были сделаны из стали стал немецкий самолет конструкции профессора Ганса Рейсснера (Hans Reissner) сделанный при участии, содействии и, в общем-то, на деньги фирмы Junkers . Самолет был сделан по схеме «утка» и носил то же название – Ente (нем.).

Самолеты Рейсснера.

В первом варианте фюзеляж не имел обшивки. Самолет полетел не сразу, однако в мае 1912 года это все-таки произошло. В дальнейшем он летал относительно успешно, пока в январе 1913 года не произошла катастрофа с гибелью пилота. Аппарат попал в штопор.

Однако, в течение этого же года самолет восстановили, несколько изменив его конструкцию (добавились кили). Фюзеляж получил полотняную обшивку и аэроплан продолжил полеты.

В 1915 году одним из самых известных полетевших цельно-металлических летательных аппаратов стал самолет все той же фирмы Junkers — Junkers J 1 . На нем основные элементы были стальные, в том числе и обшивка всех элементов конструкции, сделанная из тонких листов стали. Летные характеристики его правда оставляли желать лучшего. Он получил прозвище Blechesel (что-то типа «жестяной осел») и в серию не пошел.

Цельностальной самолет Junkers J 1.

Вместо него достаточно массово строили следующий самолет Юнкерса –J4 (или Junkers J I (римская цифра)). Он тоже был цельнометаллическим, но не цельностальным, потому что задняя часть ферменного фюзеляжа и обшивка крыла и оперения была сделана не из стали.

Самолет Junkers JI (J4).

И, вообще-то говоря, первым цельно- металлическим самолетом, поднявшимся в воздух был самолет французов Шарля Понше и Мориса Прима (Charles Ponche, Maurice Primardо) под названием Ponche-Primard Tubavion .

Название происходило от конструкции фюзеляжа, в основе которой была стальная труба, а на ней уже «вешались» все остальные элементы. В качестве обшивки использовались листы алюминия. Фюзеляж имел обтекатели и защитные кожухи.

Самолет Ponche-Primard Tubavion.

Самолет, построенный в 1911 году, летать отказывался по причине большой массы и слабосильного мотора. После того, как с него сняли все кожухи, некоторые колеса шасси и еще кое-какие детали, он все же полетел в марте 1912 года. В дальнейшем обшивка крыла все-таки была заменена на полотняную.

Улучшенный вариант самолета Ponche-Primard Tubavion.

Масса всегда была и остается одним из основных критериев возможностей самолета. Делать элементы конструкции, обладающие традиционной прочностью металла и легкостью дерева было мечтой любого тогдашнего энтузиаста от авиации. Именно поэтому на первые позиции стал выходить не так давно освоенный в массовом производстве алюминий.

Первоначально были попытки использования чистого алюминия в виде листов для обшивки, вместо полотна. Пример – вышеупомянутые аэропланы Tubavion и Junkers J I. Однако, чистый алюминий – металл, как известно, мягкий и непрочный, и несмотря на его очень соблазнительное качество — легкость, применение его в виде материала для силовых (работающих) элементов крайне малопродуктивно.

Например, на самолете Junkers J I обшивка была алюминиевая из листов толщиной 0,09 мм. Она была гофрирована для упрочнения и возможности восприятия некоторых нагрузок, но деформировалась и разрывалась даже при нажатии рукой, в частности во время перекатывания аппарата по земле.

Дюралевая задняя часть ферменного фюзеляжа и алюминиевая обшивка самолета Junkers J I.

Однако, на этом же самом самолете задняя часть ферменного фюзеляжа была изготовлена из другого, заслуживающего гораздо большего внимания материала. И хотя алюминий в последствии получил символическое название «крылатый металл» , оно, говоря точнее, должно быть адресовано для его сплава, называющегося дюралюминий (или дюраль). Именно этот сплав является сейчас основой всей мировой авиации.

Дюралюминий значительно выгоднее алюминия в массовом и прочностном отношении. То есть практически при той же массе этот сплав обладает значительно большей твердостью, прочностью и жесткостью. Марок этого сплава достаточно много, в том числе и в разных странах. Отличия марок могут быть как в составе элементов, так и в технологии изготовления (термообработка). Однако, в основном это сплавы состоящие из легирующих добавок (медь – около 4,5%, магний – около 1,5% и марганец – около 0,5%) и самого алюминия.

Название дюралюминий (дуралюмин, дуралюминий, дюралюмин) происходит от названия немецкого города Дюрен (Düren), где в 1909 году было впервые начато промышленное производство этого сплава. А слово дюраль , которое у нас употребляется скорее как жаргонное, на самом деле фирменное название (Dural®).

Одна из самых известных марок дюраля, производящихся в России (СССР) – Д16 . Он так или иначе применен на всех самолетах, произведенных или производящихся у нас, хотя, конечно, достаточно и других более специализированных или совершенных в прочностном отношении марок(например, Д18, В65, Д19, В17, ВАД1 и др.).

А начиналось все с первой половины 1922 года, когда в СССР был получен первый советский алюминиевый сплав, пригодный для авиастроения и не уступающий по характеристикам тогдашним немецким сплавам.

Назвали его кольчугалюминием , по названию г.Колчугино Владимирской области, в котором располагался металлургический завод. Он отличался от немецкого дюралюминия добавкой никеля (около 0,3%), иным соотношением меди и марганца, а также термообработкой.

Самолет АНТ-2, построенный полностью из кольчугалюминия.

Название со временем было заменено на традиционное и сплав получил наименование Д1 , под которым используется до сих пор, хотя и не так часто из-за достаточно низких характеристик по сравнению с вновь разработанными материалами.

Появление в достаточно широкой эксплуатации дюралюминия сделало возможным выполнить обшивку в конструктивно-силовой схеме с ферменным фюзеляжемболее прочной и долговечной. Для некоторых моделей самолетов листы дюраля делались гофрированными с целью повышения ее устойчивости.

Гофрированная обшивка самолета ТБ-1.

Гофрированная обшивка самолета Junkers-52

Гофрированная дюралевая обшивка фюзеляжа такой схемы могла в некоторой степени работать на восприятие изгибающего момента (на крыле она работала на кручение) и становилась таким образом «частично работающей» . Однако, это «частичность» не устраняла главных недостатков ферменной конструкции. Обшивка не была включена в общую силовую схему и, по большей части, играла роль элемента с дополнительной массой.

Балочные фюзеляжи .

С развитием подходов к авиационному конструированию, освоением новых материалов и приобретением опыта появилась возможность разработки новых типов конструктивно-силовых схем , в которых обшивка уже становилась полностью рабочим элементом (рабочая обшивка ).

Фюзеляж - коробчатая балка.

Наиболее рациональной для большой авиации и лишенной недостатков ферменных фюзеляжей стала конструкция, представлявшая собой тонкостенную оболочку (собственно обшивка большей или меньшей толщины), подкрепленную изнутри различными силовыми элементами (силовым каркасом или силовым набором , продольным и поперечным) и имеющая полезные внутренние объемы.

В этом случае фюзеляж называют балочным (балочный тип), то есть, говоря терминами из строительной механики, он представляет из себя тонкостенную коробчатую балку, которая закреплена на крыле и воспринимает на себя перерезывающие силы и изгибающий момент, в любом своем сечении, в горизонтальной и вертикальной плоскостях, а также крутящий момент.

В частности… Крутящий момент от вертикального оперения нагружает обшивку всего контура, создавая в ней касательные напряжения. Вертикальная сила от стабилизатора воспринимается обшивкой боковых поверхностей фюзеляжа параллельных действию силы — работа на сдвиг.

Изгибающий момент стабилизатора воспринимается обшивкой и подкрепляющими элементами верхней и нижней части фюзеляжа (растяжение-сжатие). Поперечная сила от киля также нагружает верхнюю и нижнюю части фюзеляжа, параллельные действию силы, вызывая в них касательные напряжения.

Кроме того в районе герметизированных отсеков к нагрузкам присоединяется и избыточное внутреннее давление, действующие изнутри фюзеляжа при полетах на высоте. Активное участие в процессе восприятия нагрузок принимает работающая обшивка . Примерная схема возможного их действия показана на рисунке (по материалам ЦНИТ СГАУ).

Нагрузки, действующие на балочный фюзеляж.

Фюзеляжи балочного типа в процессе разработки различных конструкций разделились на три вида. Первый — это фюзеляж типа «монокок» , во французском «мonocoque». Слово произошло от греческого «monos» – «единый» и французского «coquе» — скорлупа. В таких конструкциях внешняя оболочка, то есть обшивка, является главным силовым элементом, иногда единственным, воспринимающим все силовые факторы.

Она может быть достаточно мощной и жесткой и какие-либо дополнительные поперечные силовые элементы обычно не требуются и могут устанавливаться только в местах, где есть какая-то дополнительная сосредоточенная нагрузка, то есть какие-либо внешние подвески, присоединение крыла или каких-либо агрегатов (обычно это шпангоуты), в местах вырезов в фюзеляже или же в местах, где соединяются отдельные листы обшивки (чаще всего стрингеры).

То есть фюзеляжи самолетов по сути дела могут быть без работающего каркаса. Первые такие образцы появились уже в 1910-х годах. Это были самолеты чаще всего спортивной направленности, то есть для достижения больших скоростей. С этой целью использовались заглаженные фюзеляжи круглого сечения, имеющие ощутимо меньшее лобовое сопротивление по сравнению с ферменными.

Реплика самолета Deperdussin Monocoque.

Типичным представителем такого класса самолетов был французский спортивный аэроплан Deperdussin Monocoque . Сам принцип изготовления его фюзеляжа стал основой названия этого самолета (Monocoque).

Фюзеляж состоял из двух продольных половин, каждая из которых выклеивалась из трех слоев деревянного шпона в специальных формах в виде раковин (или скорлупы). Далее эти половины соединялись, склеивались между собой и обклеивались тканью.

Монококовые фюзеляжи достаточно дороги в изготовлении, и окончательно они потеснили ферменные только после Второй мировой войны, когда исчезла необходимость быстрого выпуска большого количества боевых самолетов.

Однако типичный монокок, хорошо воспринимая растяжение и изгиб, гораздо хуже работает на сжатие (зависит от толщины и жесткости обшивки конечно), поэтому подавляющее большинство фюзеляжей современных самолетов построено с внутренним подкрепляющим силовым набором. Такие конструктивно-силовые схемы носят название полумонокок (услиленный монокок), и в них обшивка работает совместно с продольным набором силовых элементов.

Полумонококовые конструкции, в свою очередь, бывают двух видов: балочный стрингерный (стрингерный полумонокок) и балочный лонжеронный (лонжеронный полумонокок).

Стрингерный полумонокок. Фюзеляж самолета ATR-72.

В первом работающая обшивка подкреплена продольными силовыми элементами – стрингерами . Их довольно большое количество и расположены они достаточно часто, что позволяет обшивке совместно с ними воспринимать весь изгибающий момент (помимо других нагрузок – крутящий момент и перерезывающая сила), работая при этом на растяжение-сжатие. Устойчивость обшивки повышают шпангоуты, установленные с относительно малым шагом.

Во втором изгибающий момент воспринимается специальными продольными элементами – лонжеронами и балками . Количество их невелико и они имеют обычно большое сечение. Обшивка же, подкрепленная стрингерами, воспринимает крутящий момент и перерезывающую силу, работая только на сдвиг, и практически не участвуя в восприятия изгиба.

Лонжеронная схема. А - лонжероны, В - стрингеры, D - работающая обшивка.

На рисунке (из материалов ЦНИТ СГАУ) показаны действие усилий (перерезывающие силы, изгибающий и крутящий моменты), воспринимаемых лонжеронным фюзеляжем (общая картина).

Нагрузки, воспринимаемые в балочной лонжеронной схеме.

Основная масса современных самолетов, как уже говорилось, имеют фюзеляжи типа полумонокок. Лонжеронный вариант достаточно выгоден для военных самолетов с двигателем в хвостовой части фюзеляжа. В этом случае в фюзеляже удобно размещать узлы крепления двигателя, делать вырезы между лонжеронами под необходимые полезные объемы (кабина, топливные баки, агрегаты) без нарушения целостности главных силовых элементов.

Стрингерные фюзеляжи выгодны для транспортных и пассажирских самолетов. Однако вырезы в таких фюзеляжах нарушают целостность силовых элементов, поэтому в таких местах требуется усиление каркаса.

Фюзеляж самолета В-17G. Стрингерный полумонокок.

Совмещенная конструкция фюзеляжа самолета Hawker Typhoon MkIB. Передняя часть - ферменная, задняя часть - полумонокок.

Самолет Hawker Typhoon MkIB.

Так как плюсы и минусы есть у всех типов и вариантов конструкций, то, в принципе, возможно их совмещение в определенном смысле в пределах одного летательного аппарата. Количество и сечение стрингеров, сечение лонжеронов и толщина обшивки может меняться в разных местах фюзеляжа. Все зависит от типа, предназначения, параметров летательного аппарата и его оборудования.

Ферменные фюзеляжи в настоящее время используются редко и в основном для самолетов малой авиации и спортивных. Примером может служит спортивный Су-26 , имеющий ферменный стальной фюзеляж и стеклопластиковую обшивку на нем (стеклопластиковые панели с пенопластовым заполнителем).

Силовая конструкция самолета Су-26.

Немного геодезии .

Существует еще один тип конструктивно-силовой схемы , применявшийся в 30-х годах при изготовлении самолетов, правда значительно реже классических схем. Это так называемая геодезическая конструкция планера, то есть фюзеляжа и крыла.

В этой конструкции силовые элементы, воспринимающие нагрузки, располагаются вдоль геодезических линий. Для фюзеляжа, который по форме близок к цилиндру – это винтовые линии (спирали) и окружности. В итоге образуется сетчатая конструкция с узлами соединения элементов в многочисленных точках пересечения.

Она воспринимает крутящий момент и перерезывающие силы. Изгибающий момент воспринимают дополнительные лонжероны в фюзеляже. Силовыми элементами в этом случае служат легкие и тонкие профили. Вся конструкция отличается высокой прочностью при относительно малой массе .

Бомбардировщик Vickers Wellington.

Боевые повреждения фюзеляжа самолета Vickers Wellington.

Кроме того, она в отличие от ферменной схемы полностью оставляет свободными все внутренние полости фюзеляжа, что былохорошим плюсом особенно для больших самолетов. Также при постройке такой конструкции легче было соблюсти требуемые аэродинамические формы без больших затрат на приспособления и инструменты.

Геодезическая схема также могла быть полезна для повышения боевой живучести военных самолетов. Так как каждый элемент конструкции мог воспринимать нагрузки других элементов при их разрушении, то боевое повреждение часто не вело к фатальному разрушению всей конструкции.

По такой схеме, например, был построен британский бомбардировщик Vickers Wellington (производился в 1936-1945 годах). Однако, обшивка в этой схеме была неработающая (на Веллингтоне полотняная). С ростом скоростей полета она не выдерживала аэродинамических нагрузок, и профиль крыла деформировался. Это стало одной из причин отказа от такой схемы уже в послевоенное время.

Немного более конкретно о силовых элементах.

Продольный силовой набор .

Стрингеры . Продольные силовые элементы для подкрепления обшивки. Работают вместе с обшивкой на растяжение-сжатие, а также увеличивают ее устойчивость при работе на сдвиг от кручения фюзеляжа. Обычно устанавливаются по всей длине фюзеляжа .

Профили стрингеров и лонжеронов.

Изготавливаются из готовых профилей различной конфигурации, как замкнутой, так и разомкнутой и могут иметь различные уровни прочности. Материал — дюралюминий различных марок (например Д16 и В95), в зависимости от конкретных преобладающих условий работы стрингера.

Лонжероны (балки). В общем-то похожи на стрингеры, но имеют более мощное сечение. Часто являются одним из основных конструктивных элементов, не только фюзеляжа, но и крыла и хвостового оперения, применяются, в принципе во многих инженерных конструкциях, а не только в авиации. Многие наверняка слышали о об автомобильных лонжеронах.

Бимс в конструкции полумонокока.

Основная функция – восприятие изгибающего момента и осевых сил, т.е. работа на растяжение-сжатие.Однако, лонжерон коробчатого сечения может участвовать и в восприятии крутящего момента. Лонжероны могут быть цельными или составными, состоящими из нескольких профилей. Материал – алюминиевые сплавы и сталь различных марок.

Коробчатые лонжероны , одна из стенок которых – обшивка, часто располагают по окантовке больших вырезов в фюзеляже для их усиления. Например, в районе грузового люка на транспортных самолетах. Такие лонжероны называют бимсы .

К вспомогательному продольному силовому набору можно отнести также полы, в частности в отсеках транспортных самолетов и салонах пассажирских самолетов, основу которых составляют силовые балки.

Поперечный силовой набор .

Шпангоуты. У этого элемента две основные функции. Первая – формирование и сохранение формы фюзеляжа, точнее его поперечного сечения. Для этого предназначены нормальные шпангоуты. Они подкрепляют обшивку, то есть нагружаются внешним аэродинамическим или внутренним избыточным давлением, приходящимся на обшивку фюзеляжа. Шаг их расположения выбирается из соображений ее наиболее эффективной работы. Обычно это интервал от 150 до 600мм.

Фюзеляж-полумонокок самолета Sukhoi Superjet 100. Нормальные шпангоуты и стрингеры.

Вторая – восприятие различных сосредоточенных нагрузок большой величины типа узлов крепления и соединения тяжелого внутреннего и внешнего оборудования, двигателей, различных пилонов и подвесок, присоединение консолей крыла. Это усиленные (силовые) шпангоуты . Их количество на летательном аппарате обычно значительно меньше, чем нормальных.

Примеры усиленных рамных шпангоутов.

Силовые шпангоуты обычно изготавливаются в виде рамы (рамные ), которая может быть сборной или монолитной. Сама рама работает на изгиб, распределяя внешнюю нагрузку по периметру обшивки. В любом сечении такой рамы действует и перерезывающая сила.

Усиленный рамный шпангоут с узлами крепления крыла к фюзеляжу.

Силовые шпангоуты также могут располагаться по краям больших вырезов в фюзеляже. Кроме того они используются в качестве перегородок, воспринимающих избыточное давление в гермоотсеках . В этом случае кольцевое пространство чаще всего зашивают стенкой, подкрепленной силовыми элементами типа стрингеров. Эти стенки могут иметь сферическую форму.

Обшивка . Такой же силовой элемент, участвующий в силовой работе всего фюзеляжа балочного типа. Для основной массы современных балочных фюзеляжей изготавливается из стандартных листов дюралюминия, которые формуются по очертаниям фюзеляжа. Стыковка (или нахлест) листов производится на силовых элементах (стрингерах, шпангоутах).

Наиболее распространенный способ крепления обшивки к силовому каркасу– заклепочные соединения , но может применяться сварка и склейка. Обшивка может крепиться только к продольному набору (стрингерам), только к поперечному (шпангоутам) или к тем и другим. Это, зачастую, может определять необходимую толщину (т.е. и массу) обшивки.

Первый случай хорош с точки зрения улучшения аэродинамики, так как отсутствуют вертикальные заклепочные швы и, соответственно, уменьшается аэродинамическое сопротивление. Однако, при этом обшивка с ростом нагрузок быстрее теряет устойчивость.

Чтобы этого избежать и не увеличивать ее толщину, а значит и массу всей конструкции, ее соединяют со шпангоутами. Это может делаться непосредственно или через специальные дополнительные элементы, называемые компенсаторами . В таком случае шпангоуты называют распределительными . Они дополнительно нагружаются от обшивки внутренним избыточным давлением, действующим на нее.

Второй случай, когда обшивка крепится только к шпангоутам и не подкреплена стрингерами, относится к фюзеляжам-монококам или как еще их называют обшивочным фюзеляжам . Как уже упоминалось раньше, обшивка сама по себе плохо работает на сжатие, поэтому прочность такого фюзеляжа определяется возможностями по сохранению устойчивости обшивки именно в зонах сжатия.

Чтобы эти возможности повысить для монокока есть только один способ – увеличить толщину обшивки, а значит и массу всей конструкции. Если самолет большой, то это увеличение может быть значительным. Это основная причина невыгодности фюзеляжа такого типа.

Толщина обшивки может также изменяться в разных сечениях фюзеляжа в зависимости от наличия вырезов (особенно это касается стрингерных фюзеляжей), или гермоотсеков с избыточным давлением.

Кроме того она может зависеть от места расположения обшивки на фюзеляже. Например, при воздействии собственной весовой нагрузки верхняя часть обшивки фюзеляжа работает на растяжение всей своей площадью совместно со стрингерами, а нижняя часть при этом на сжатие только площадью, подкрепленной стрингерами, поэтому и потребная толщина сверху и снизу может быть разная.

В настоящее время довольно широко применяются в качестве обшивки механически (фрезерование) или химически (травление) обработанные листы больших размеров с готовой уже переменной толщиной, а также монолитные фрезерованные панели необходимой переменной толщины с выфрезерованными подкрепляющими продольными ребрами-стрингерами .

Фрезерованные панели обшивки самолета Sukhoi Superjet 100.

Такого рода конструктивные узлы обладают большей усталостной прочностью, равномерным распределением напряжений. Отсутствует необходимость многоместной герметизации, как в заклепочных соединениях. Кроме того улучшается аэродинамика из-за снижения сопротивления в результате гораздо меньшего количества заклепочных швов.

Что касается материалов, то самым распространенным и универсальным, как уже говорилось выше, остается дюралюминий различных марок, более или менее приспособленный для различных условий работы и конструктивно-силовых схем и элементов летательных аппаратов.

Однако, при постройке самолетов, работающих в особых условиях (например, при высоком кинетическом нагреве ) применяется сталь особых марок и титановые сплавы. Ярким представителем таких самолетов является легендарный МиГ-25 , фюзеляж которого практически целиком сделан из стали и главный способ соединения его элементов – сварка.

—————————

Столь же значимыми, как и фюзеляж элементами любого самолета являются крыло и оперение. В силовом плане они также воспринимают усилия и передают их на фюзеляж, на котором все нагрузки уравновешиваются. Конструктивно-силовые схемы крыльев современных самолетов имеют много общего со схемами фюзеляжей. Но с этим мы ознакомимся уже в следующей статье на подобную тему….

До новых встреч.

В заключение картинки, которые не поместились в текст.

Шпангоуты фюзеляжа самолета F-106 Delta Dart (усиленные рамные и нормальные).

Рамные силовые шпангоуты фюзеляжа самолета F-16 с узлами крепления оборудования.

Силовой шпангоут для гермоотсека самолета Sukhoi Superjet 100.

Усиленный шпангоут в виде стенки гермоотсека.

Составные рамные шпангоуты.

Стрингеры и шпангоуты самолета Вoeing-747.

Ферменный каркас фюзеляжа самолета Piper PA-18.

Самолет Piper PA-18.

Типы конструктивно-силовых схем фюзеляжа; 1 - ферменная, 2 - ферменная с гофрированной обшивкой, 3 - монокок, 4 - полумонокок.

Типы конструкции фюзеляжей.

Фюзеляж самолета Supermarine Spitfire. Полумонокок.

Фюзеляжи самолетов Vickers Wellington в заводском цеху.

В этой рубрике мы будем изучать историю создания и развития известных мировых брендов. Будем разбираться, что помогло великим компаниям стать таковыми, что стоит в основе их миссии и ценностей. Какие принципы успеха были заложены в них основателями и т.д.

Я молодой предприниматель, у меня несколько бизнес-проектов и мне хочется, чтобы эти проекты выросли и стали не менее выдающимися, чем те компании, которые будут разбираться в данной рубрике.

Чтобы это сделать я решил не выдумывать велосипед, а пойти по стопам великих. И начнем мы с компании Ford Motor Company, или в простонародье Форд.

Иди вперед – слоган легендарного бренда Ford Motor Company. Чтобы понять, какой смысл вкладывают в это понятие фордовцы, посмотрите короткий, но весьма эффектный промо-ролик ниже:

Компания Ford Motor занимает второе место по объему выпуска автомобилей в Европе, третье на рынке США и четвертое в мире. Под брендом «Ford» компания выпускает модели легковых и коммерческих автомобилей, также ей принадлежит и торговая марка «Lincoln».

Предприятия легендарной американской автомобилестроительной компании расположены на территории 65 стран – в США, Канаде, Аргентине, Испании, Китае, России и др.

Общее количество занятых в Ford Motor сотрудников составляет около 171 000 человек. Продажи компании за 2012 г. составили более 130 млрд. долларов!

В списке крупнейших публичных обществ, по версии журнала Forbes, Ford Motor Company занимает 4 место в своей отрасли, уступая тройке лидеров – немецким компаниям Volkswagen Group и Daimler (1-ое и 3-е места) и японской Toyota Motor.

Ford Motor является одной из крупнейших компаний в мире, управляемой одной семьей – Фордам принадлежит около 40% акций. Ценные бумаги компании, находящиеся в свободном доступе, торгуются на Нью-Йоркской фондовой бирже (NYSE). Стоимость одной акции – около 2$ (апрель 2013г.).

По данным Forbes рыночная капитализация компании в 2013 г. достигла более 51 млрд. долларов!

Но история Ford Motor занимательна не только финансовыми показателями, но и интересными фактами. Именно эта компания впервые применила классический автосборочный конвейер, и в этом, безусловно, заслуга ее легендарного основателя .

В 2013 году компания празднует свое 110-летие, а ведь этот срок превышает длительность жизни среднестатистического человека! Ford Motor Company – настоящий динозавр автомобилестроения.

В чем заключается ее секрет долгожительства и успеха? Попробуем разобраться

Штаб-квартира компании находится в городе Дирборн (штат Мичиган), там, где 30 июля 1863 года появился на свет ее . Как говорят, где родился – там и пригодился, в 2013 году исполняется 150 лет со дня рождения Генри Форда, а дело всей его жизни по-прежнему развивается и процветает.

Сейчас «у руля» современного автомобилестроения стоит Вильям Форд-младший – правнук Генри Форда, являющийся Председателем совета директоров Ford Motor. В 2001 году он возглавил компанию, убытки которой на тот момент составляли около 5 млрд. долларов.

Форд-мл. смог привести ее к трем годам , к тому же именно он пригласил на должность президента компании Алана Малалли, талантливого управленца, сумевшего найти правильную стратегию компании в 3-ем тысячелетии.

Конкурентоспособные расходы, высокое качество, польза для общества – вот основные принципы управления компанией, которые завещал Генри Форд, и его потомок по сей день руководствуется формулой успеха прадеда.

Эти мысли я уже взял на вооружение. Например, одно из моих направлений – это обучение и предоставление образовательных и консалтинговых услуг. Мне есть над чем здесь поработать. Я хочу сделать так, чтобы у меня были самые качественные услуги.

Это вопрос требующий серьезной проработки. Я постоянно задаюсь вопросом: “Как сделать свои услуги более качественными? Как лучше обслужить клиента? Что еще я могу сделать для того, чтобы человек получал больше за ту же цену?”

В другом проекте (интернет-магазин mistersaver.ru) я тоже стараюсь применить эти принципы. Уже само направление энергосберегающих технологий было выбрано мной за то, что здесь можно оказать пользу обществу. За высокое качество товаров я, к сожалению, не могу ответить, так как я не производитель. Но все равно стараюсь снизить риски своих клиентов.

Например, у нас есть 45-дневный тест-драйв продуктов. В течение этого времени клиент может попробовать предлагаемые нами решения и если они его разочаруют, то мы возвращаем деньги.

В общем, при постановке перечисленных выше вопросов можно придумать много интересных решений. Но давайте вернемся к Фордам.

Как же начиналась история семейного предприятия?

Компания Ford Motor была основана в 1903 году, предпринимателями Мичигана, возглавляемыми , на долю которого приходилось 25,5% акций вновь созданного предприятия. Под автомобильный завод была переоснащена фургонная фабрика в Детройте.

Под руководством Форда, являющегося одновременно и вице-президентом, и главным инженером, работники собирали автомобили из поставляемых другими заводами запчастей. Уже в июле 1903 года Ford Motor Company продала свой первый автомобиль.

В то время компания собирала автомобили только «под заказ», и Форд столкнулся с нехваткой квалифицированных рабочих для выпуска машин «ручной сборки». Он решил стандартизировать детали автомобиля, чтобы их могли собирать даже не специалисты.

В 1908 году завод выпускает модель «Форд-T» – надежный и недорогой автомобиль. Форд внедряет в цехах беспрерывную линию по сборке «Форда-Т»; благодаря конвейерным линиям, производство автомобилей достигает рекордного уровня – новая машина сходит с конвейера каждые 10 секунд! Инновации в Ford Motor служат отправной точкой для развития массового производства во всем мире.

Продукт компании Ford «Форд-Т» подстегивает экономику Америки – в 1909 году власти сооружают бетонный участок длиной в милю на улице в Детройте, что положило начало массовому строительству дорог.

В 2008 году в Ричмонде (штат Индиана) в рамках 100-летнего юбилея автомобиля «Форд- Т » прошла вечеринка « T-Party», поставившая себе целью войти в Книгу рекордов Гиннеса по количеству принявших в ней участие машин именно этой модели. По приблизительным подсчетам, из 15 млн. автомобилей, выпущенных компанией с 1908 по 1927 гг., на сегодняшний день сохранилось почти сто тысяч машин!

На свой праздник некоторые «Форды-Т» попали своим ходом – один из «юбиляров» пробежал на своих четырех колесах почти 3000 км! Вот вам и музейный экспонат! Такому «забегу» может позавидовать и современное авто.

В 1999 году более 120 экспертов из 32 стран по праву назвали «Форд-Т» самым значимым автомобилем ХХ столетия!

В 1919 году Генри Форд и его сын Эдсел выкупают акции предприятия у других акционеров и становятся единоличными владельцами Ford Motor. В том же году Эдсел наследует управление компанией.

В 1927 году, когда продажи любимого, но уже морально устаревшего «Форда-Т» не приносят прибыли, Форд приостанавливает производство и приступает к созданию нового автомобиля. В 1927 году он представляет новую модель «Форд-А», выгодно отличавшуюся своим дизайном и техническими параметрами.

Со вступлением США во Вторую мировую войну, Ford Motor начинает выпускать джипы и грузовики для армии – компании «простили» пронацистские симпатии ее основателя, когда в 30-х гг. в Германии Форд организовал производство гусеничной и колесной техники для Вермахта.

В 1943 году, после скоропостижной смерти сына, Генри Форд вновь возвращается на пост президента, а в сентябре 1945 года передает полномочия своему старшему внуку – Генри Форду II.

Со смертью основателя компании в 1947 году, для Ford Motor заканчивается определенная эпоха. Но, не смотря на кончину своего легендарного идейного вдохновителя, компания продолжает активно развиваться

Сегодня «Ford» является одним из самых известных брендов планеты , а знаменитый овальный логотип компании существует уже более полстолетия! Фирменная эмблема Ford Motor менялась несколько раз. Первый логотип придумал помощник Генри Форда, но уже через несколько лет он преобразился, в 1906 году торговый знак приобрел новые черты – «летящее» написание первой и последней букв названия компании подчеркивало стремительное движение вперед.

В 1907 году, благодаря английским представителям компании, появляется овальный логотип, символизирующий «клеймо высшей пробы» – экономичность и надежность.

В 1911 году эмблема компании окончательно утвердилась – овальная форма логотипа была соединена с «летящим» написанием. Первым автомобилем с этим знаком на решетке радиатора была модель «Форд-A».

С 1976 года эмблема Ford в виде овала с синим фоном и серебряными литерами ставится на все автомобили компании.

В 2003 году, в честь 100-летнего юбилея Ford Motor, дизайн известного фордовского знака был немного изменен – логотипу придали черты самых первых, исторических, эмблем.

Впрочем, в XXI веке редизайном логотипа компания не ограничилась. Большим изменениям подверглась стратегия компании

Ранее Ford Motor по географическому признаку разделялся на три структуры: Ford North Americа, Ford Asia Pacific и Ford of Europe. Каждое из этих подразделений имело свой модельный ряд, для автомобилей региональных рынков применялись разные технические решения и дизайн.

Однако президент компании Алан Малалли, возглавивший Ford Motor в сентябре 2006 года, в этом же году объявляет о новом стратегическом направлении «Единый Ford» («One Ford»). Смена стратегии требовалась, дабы уберечь компанию от разорения – ее убытки на тот момент составляли около 17 млрд. долларов.

Ключевая идея «Единого Ford» заключалась в том, что компания постепенно начинает выпускать автомобили, общие для всех рынков – мир становится глобальным и ему требуются глобальные автомобили. Примером такой «всемирной» машины стал Ford Focus III, построенный на единой платформе.

В рамках новой стратегии, компания продает свои люксовые марки – Aston Martin, Jaguar, Volvo. Во время кризиса требовалось сделать компанию проще, а поскольку 85% ее бизнеса обеспечивалось брендом Ford, все силы и средства бросаются именно на его спасение.

В 2010 году компания выпускала около 45 моделей машин; по словам президента компании, эту цифру планируется сократить до 20-25.

Для объединения региональных подразделений компании в «Единый Ford», Малалли сумел реконструировать информационное подразделение и поднять его авторитет: впервые в истории Ford Motor директор IT-департамента вошел в совет директоров и начал подчиняться непосредственно гендиректору.

Экономический кризис смог пережить и завод в Дирборне, родном городе Генри Форда. Ранее предприятие простаивало неделями, но грамотное руководство и выпуск пикапов Ford Focus F150позволили заводу пережить нелегкие времена без государственных вливаний.

Завод в Дирборне просто огромен – его площадь составляет около 220 000 м 2 , а от начала до конца сборочной линии тянется почти 7 км конвейеров, извивающихся по предприятию, как гигантские американские горки. В настоящее время на заводе ежедневно собирается около 1200 автомобилей, в каждом из которых более 3 тысяч различных запчастей.

К слову о запчастях, вспоминается анекдот: «В связи с необходимостью увеличить долю российских комплектующих в автомобилях Ford Focus, компания Ford решила увеличить число резиновых ковриков до восьми».

Мне кажется, что если руководствоваться в работе принципом Генри Форда – «качество – это делать что-либо правильно, даже когда никто не смотрит» – то наверняка будет что предложить и помимо ковриков)

В 3-ем тысячелетии Ford Motor активно меняется, его слоганы трансформируются вместе с ним. Первый рекламный девиз, появившийся в 1914 году, гласил «Ford: The Universal Car» («Форд: универсальный автомобиль»).

Среди особо удачных рекламных девизов стоит отметить такие, как «Навстречу переменам» и «Надежен. Создан для жизни»

Сейчас на смену слоганам в Северной Америке («Drive One» / «Возьми и езжай») и Европе («Feel the Difference» / «Почувствуй разницу») пришла глобальная формула продвижения «единого форда», звучащая как «Go futher» / «Иди вперед».

Впервые этот призыв появился в новогоднем поздравлении главы Ford, адресованном всему персоналу. Единый слоган теперь будет звучать на всех рекламных материалах компании.

Между прочим, коллектив компании сильно замотивирован на превосходный результат; и если Антон Чехов был убежден, что «в человеке всё должно быть прекрасно: и лицо, и одежда, и душа, и мысли», то специалисты Ford Motor убеждены, что в автомобиле тоже должно быть все прекрасно – от топливной технологии до дизайна салона.

Чтобы гарантировать отличный внешний вид своей продукции, в компании существует специальная лаборатория The Visual Performance Evaluation Lab.

В лаборатории расположены около 300 лампочек общей мощностью 6кВт, с помощью которых моделируются различные фазы обращения земли вокруг Солнца. Может возникнуть резонный вопрос – какое отношение имеет светило к развитию фордовских транспортных средств?

Дело в том, что внешний вид машины и ее интерьер изменяется в зависимости от освещения и времени суток; чтобы отследить эти перемены и минимизировать нежелательные эффекты (к примеру, отблики на панели приборов), компания и проводит подобные тесты. Посмотреть, как работает лаборатория, можно здесь:

Компания Ford Motor принимает активное участие в спортивных соревнованиях по всему миру. Главным направлением ее деятельности в сфере автоспорта является чемпионат «Формула Ford», выделяющийся среди гоночных соревнований для одноместных автомобилей своей долгой и интересной историей.

С момента своего появления в 1967 году, «Формула Ford» стала настоящей «кузницей кадров» – именно в ней приобретали опыт такие впоследствие прославленные автогонщики как Джеймс Хант, Дженсон Батон, Айртон Сенна, Мика Хаккинен, Михаэль Шумахер и др.

Компания тесно связана с гонками «Формула-1»: она поставляла двигатели для гоночных автомобилей этой серии на протяжении 4 десятков лет, с 1967 по 2004 гг. А доработанная модель Ford GT стала самым быстрым автомобилем в мире, который может ездить по дорогам общего пользования – достигнув скорости 455,80 км/ч, он был внесен в Книгу рекордов Гиннеса.

Ford Motor также участвует в Чемпионате мира по ралли с момента его основания, с 1973 года, и имеет собственную раллийную команду.

От себя хочу добавить, что я бы очень хотел создать такой бизнес, который стал бы для меня и сотрудников не только работой, но и интересным увлечением. Прикольно заниматься чем-то не только ради денег, но и ради удовольствия, адреналина, красоты, изящества и т.д.

Ford GT – крутая тачка. Я бы с удовольствием на ней прокатился. А еще лучше поучаствовал в соревнованиях. Я азартный человек. Спортом занимаюсь с детства. И мне нравится чувство соревновательности и дух победы!

Компания может похвастаться не только скоростными характеристиками своих автомобилей, но и их объемами продаж. В 2012 году аналитическое агентство JATO Dynamics назвало автомобиль Ford Fiesta вторым самым продаваемым автомобилем в Европе

Что касается российского рынка, то тут компания Ford в 2006 году становится лидером продаж среди иностранных брендов. История Ford Motor в России начинается еще в 1907 году; после революции 1917 г. она продолжила свою деятельность на нашей территории.

В конце 20-х гг. с руководством СССР был заключен контракт, согласно которому американцы предоставляли чертежи двух автомобилей, свою помощь в строительстве автозавода и обучении рабочих. Первые автомобили нового завода в Нижнем Новгороде – ГАЗ-А и ГАЗ-АА – были лицензионными «клонами» машин компании «Форд».

В 1996 году открывается торговое представительство Ford в Москве. Дочерней компании Ford Motor в РФ принадлежит автомобильный завод во Всеволожске (Ленинградская область), открытый в 2002 году. На предприятии осуществляется сварка кузовов, покраска и финальная сборка машин Ford Focus III и Ford Mondeo (с 2009 года). В апреле 2006 года этот з авод выпустил стотысячный автомобиль Ford Focus.

В течение 2007 года в России было продано более 175 000 автомобилей марки «Форд», около 90 000 из которых пришлось на модель Focus.

Отметить успех автомобиля Focus, хорошо продаваемого не только в России, компания решила весьма оригинально – заказав ледяную скульптуру своего авто в масштабе 1:1.

Масса ледяной машины превысила 6 тонн, что больше пяти масс настоящих Ford Focus (снаряженная масса авто равняется 1,3 тоннам). Это прозрачное изваяние демонстрировалась на международной автомобильной выставке British International Motor Show.

Впрочем, свою миссию Ford Motor видит не только в получении больших прибылей от продаж.

Компания сосредоточена на создании сильного бизнеса, выпускающего продукцию, которая улучшает мир. Свое пафосное заявление Ford Motor подкрепляет вполне конкретными делами. Компания занимает активную позицию в области охраны окружающей среды, в области экологичных технологий ее можно назвать настоящим первопроходцем.

В европейских автомобилях Ford используется более 250 неметаллических компонентов , содержащих переработанные материалы, что позволяет ежегодно отправлять на свалки на 14 000 тонн меньше отходов.

Ford Motor разрабатывает бензиновые и дизельные двигатели, позволяющие еще больше . Новый Ford Mondeo, к примеру, оснащен дизельным двигателем объемом 1,8 литра и является более экономичным, чем эта же модель 1993 года, производя на 20% меньше углекислого газа .

Уже сегодня компания предлагает широчайший выбор экологичных автомобилей . Любой водитель знает, что транспортное средство и алкоголь – вещи несовместимые. Однако под капотом автомобилей Ford Flexifuel и Ford C-MAX Flexifuel эти понятия «подружились» – ведь они работают не на бензине, а на топливе E85, на 85% состоящем из спирта биэтанола.

Биоэтанол получают из таких натуральных продуктов, как древесные отходы, пшеница, сахарная свекла и пр., т.е. из возобновляемого сырья . Данная топливная технология снижает выбросы CO 2 в атмосферу по сравнению с бензиновыми двигателями на 30-80%, поэтому подобные модели Ford Motor можно смело называть «зелеными» автомобилями .

Еще одной гордостью Ford Motor является автозавод в Дагенхеме (юго-восток Великобритании) – это первое в мире предприятие, чьи производственные мощности целиком и полностью обеспечиваются электроэнергией, полученной от собственных ветряных турбин .

Но на этом Ford Motor не собирается останавливаться. Следуя своему лозунгу «иди вперед», компания продолжает ставить перед собой все новые и новые цели.

Не нужно зацикливаться на деньгах!

Из перечисленного выше можно сделать вывод, что при создании и развитии бизнеса нельзя зацикливаться только на деньгах и прибылях. Бизнес, который вы развиваете должен помогать людям, должен улучшать нашу жизнь, делать ее более комфортной и безопасной.

Мне нравится политика компании Форд, относительно экологичности производимых ими автомобилей, а также экономичности при эксплуатации. В моем блоге можно найти массу материалов о том, как . Я сам в свое время установил на свой автомобиль газобаллонное оборудование, чтобы тратить меньше денег на бензин.

Именно разумное потребление лежит в основе моего видения того, как достичь финансовой свободы и независимости. Чтобы увеличить свои доходы нужно сделать так, чтобы доходы всегда были ваших расходов. А полученную разницу (остаток), нужно направлять на создание активов, накапливание денег, чтобы впоследствии создать бизнес, например.

Спасибо компании Ford Motor за то, что еще раз убедили меня в правильности выбранного пути и за то, что показали каким должен быть правильный бизнес.

( голоса)