Выбросы от автотранспорта в атмосферу. В россии растет количество выбросов от автотранспорта Выброс вредных веществ в атмосферу от автомобилей

Автомобильный транспорт наиболее агрессивен в сравнении с другими видами транспорта по отношению к окружающей среде. Он является мощным источником ее химического (поставляет в окружающую среду громадное коли­чество ядовитых веществ), шумового и механического загрязнения. Следует подчеркнуть, что с увеличением автомобильного парка уровень вредного воз­действия автотранспорта на окружающую среду интенсивно возрастает. Так, если в начале 70-х годов ученые-гигиенисты определили долю загрязнений, вносимых в атмосферу автомобильным транспортом, в среднем равной 13%, то в настоящее время она достигла уже 50% и продолжает расти. А для горо­дов и промышленных центров доля автотранспорта в общем объеме загрязне­ний значительно выше и доходит до 70% и более, что создает серьезную эко­логическую проблему, сопровождающую урбанизацию.

В автомобилях имеется несколько источников токсичных веществ, основными из которых являются три:

  • отработавшие газы
  • картерные газы
  • топливные испарения

Рис. Источники образования токсичных выбросов

Наибольшая доля химического загрязнения окружающей среды авто­мобильным транспортом приходится на отработавшие газы двигателей внут­реннего сгорания.

Теоретически предполагается, что при полном сгорании топлива в ре­зультате взаимодействия углерода и водорода (входят в состав топлива) с кислородом воздуха образуется углекислый газ и водяной пар. Реакции окис­ления при этом имеют вид:

С+О2=СО2,
2Н2+О2=2Н2.

Практически же вследствие физико-механических процессов в цилинд­рах двигателя действительный состав отработавших газов очень сложный и включает более 200 компонентов, значительная часть которых токсична.

Таблица. Ориентировочный состав отработавших газов автомобильных двигателей

Компоненты

Размерность

Пределы концентраций компонентов

Бензиновый, с искр. зажигание

Дизельный

Бензиновые

Дизельные

Кислород, O2

Пары воды, Н2О

0,5…10,0

Двуокид углерода, СО2

Углеводороды, СН (суммарно)

Оксид углерода, СО

Оксид азота, NOx

Альдегиды

Оксиды серы (сумм.)

Бенз(а)пирен

Соединения свинца

Состав отработавших газов двигателей на примере легковых автомобилей без их нейтрализации можно представить в виде диаграммы.

Рис. Составные части отработавших газов без применения нейтрализации

Как видно из таблицы и рисунка, состав отработавших газов рассматриваемых типов двигателей существенно различается прежде всего по концентрации продуктов неполного сгорания – оксида углерода, углеводородов, оксидов азота и сажи.

К токсичным компонентам отработавших газов относятся:

  • оксид углеро­да
  • углеводороды
  • оксиды азота
  • оксиды серы
  • альдегиды
  • бенз(а)пирен
  • со­единения свинца

Различие в составе отработавших газов бензиновых и дизельных двигателей объясняется большим коэффициентом избытка воз­духа α (отношение действительного количества воздуха, поступающего в ци­линдры двигателя, к количеству воздуха, теоретически необходимому для сго­рания 1 кг топлива) у дизельных двигателей и лучшим распыливанием топли­ва (впрыск топлива). Кроме того, у бензинового карбюраторного двигателя смесь для раз­личных цилиндров неодинакова: для цилиндров, расположенных ближе к кар­бюратору, – богатая, а для удаленных от него – беднее, что является недо­статком бензиновых карбюраторных двигателей. Часть топливовоздушной смеси у карбю­раторных двигателей поступает в цилиндры не в парообразном состоянии, а в виде пленки, что также увеличивает содержание токсичных веществ вслед­ствие плохого сгорания топлива. Этот недостаток не характерен для бензино­вых двигателей с впрыском топлива, так как подача топлива осуществляется непосредственно к впускным клапанам.

Причиной образования оксида углерода и частично углеводородов явля­ется неполное сгорание углерода (массовая доля которого в бензинах дости­гает 85%) из-за недостаточного количества кислорода. Поэтому концентрации оксида углерода и углеводородов в отработавших газах возрастают при обога­щении смеси (α 1, вероятность указанных превращений во фронте пламени мала и в отработавших газах содержится меньше СО, но в цилиндрах находятся дополнительные источники его появления:

  • низкотемпературные участки пламени стадии воспламенения топлива
  • капли топлива, поступающие в камеру на поздних стадиях впрыска и сгорающие в диффузионном пламени при недостатке кислорода
  • частицы сажи, образовавшейся в период распространения турбулент­ного пламени по гетерогенному заряду, в котором, при общем избытке кисло­рода могут создаваться зоны с его дефицитом и осуществляться реакции типа:

2С+О2 → 2СО.

Диоксид углерода СО2 является не токсичным, но вредным веществом в связи с фиксируемым повышением его концентрации в атмосфере планеты и его влиянием на изменение климата. Основная доля образовавшихся в ка­мере сгорания СО окисляется до СО2, не выходя за пределы камеры, ибо за­меренная объемная доля диоксида углерода в отработавших газах составля­ет 10-15%, т. е. в 300…450 раз больше, чем в атмосферном воздухе. Наиболь­ший вклад в образование СО2 вносит необратимая реакция:

СО + ОН → СО2 + Н

Окисление СО в СО2 происходит в выпускной трубе, а также в нейтра­лизаторах отработавших газов, которые устанавливаются на современных автомобилях для принудительного окисления СО и несгоревших углеводородов до СО2 в связи с необходимостью выполнения норм ток­сичности.

Углеводороды

Углеводороды – многочисленные соединения различного типа (например, C6H6 или C8H18) состоят из исходных или распав­шихся молекул топлива, и их содержание увеличивается не только при обога­щении, но и при обеднении смеси (а > 1,15), что объясняется повышенным количеством непрореагировавшего (несгоревшего) топлива из-за избытка воздуха и пропусков воспламенения в отдельных цилиндрах. Образование угле­водородов происходит также из-за того, что у стенок камеры сгорания темпе­ратура газов недостаточно высока для сгорания топлива, поэтому здесь пла­мя гасится и полного сгорания не происходит. Наиболее токсичны полициклические ароматические углеводороды.

В дизельных двигателях легкие газообразные углеводороды образуются при термическом распаде топ­лива в зоне срыва пламени, в ядре и в переднем фронте факела, на стенке на стенках камеры сгорания и в результате вторичного впрыскивания (подвпрыскивания).

Твердые частицы включают нерастворимые (твердый углерод, оксиды металлов, диоксид кремния, сульфаты, нитраты, асфальты, соединения свин­ца) и растворимые в органическом растворителе (смолы, фенолы, альдегиды, лак, нагар, тяжелые фракции, содержащиеся в топливе и масле) вещества.

Твердые частицы в отработавших газах дизелей с наддувом состоят на 68…75% из нерастворимых веществ, на 25…32% – из растворимых.

Сажа

Сажа (твердый углерод) является основным компонентом нераствори­мых твердых частиц. Образуется при объемном пиролизе (термическом раз­ложении углеводородов в газовой или паровой фазе при недостатке кислоро­да). Механизм образования сажи включает несколько стадий:

  • образование зародышей
  • рост зародышей до первичных частиц (шестиугольных пластинок гра­фита)
  • увеличение размеров частиц (коагуляция) до сложных образований–конгломератов, включающих 100… 150 атомов углерода
  • выгорание

Выделение сажи из пламени происходит при α = 0,33…0,70. В от­регулированных двигателях с внешним смесеобразованием и искровым зажи­ганием (бензиновых, газовых) вероятность появления таких зон незначитель­на. У дизелей локальные переобогащенные топливом зоны образуются чаще и в полной мере реализуются перечисленные процессы сажеобразования. Поэтому выбросы сажи с отработавшими газами у дизелей больше, чем, у дви­гателей с искровым зажиганием. Образование сажи зависит от свойств топли­ва: чем больше отношение С/Н в топливе, тем выход сажи выше.

В состав твердых частиц кроме сажи входят соединения серы, свинца. Оксиды азота NOx представляют набор следующих соединений: N2О, NO, N2О3, NО2, N2О4 и N2O5. В отработавших газах автомобильных двигателей преобла­дает NO (99% в бензиновых двигателях и более 90% в дизелях). В камере сгорания N0 может образовываться:

  • при высокотемпературном окислении азота воздуха (термический NО)
  • в результате низкотемпературного окисления азотсодержащих соеди­нений топлива (топливный NO)
  • из-за столкновения углеводородных радикалов с молекулами азота в зоне реакций горения при наличии пульсации температуры (быстрый NO)

В камерах сгорания доминирует термический NO, образующийся из мо­лекулярного азота во время горения бедной топливовоздушной смеси и сме­си, близкой к стехиометрической, за фронтом пламени в зоне продуктов сго­рания. Преимущественно при сгорании бедных и умеренно богатых смесей (α > 0,8) реакции происходят по цепному механизму:

О + N2 → NO + N
N + О2 → NO+О
N+OH → NO+H.

В богатых смесях (а < 0,8) осуществляются также реакции:

N2 + ОН → NO + NH
NH + О → NО + ОН.

В бедных смесях выход NО определяется максимальной температурой цепочно-теплового взрыва (максимальная температура 2800…2900° К), т. е. кинетикой образования. В богатых смесях выход NО перестает зависеть от максимальной температуры взрыва и определяется кинетикой разложения и содержание NО уменьшается. При горении бедных смесей значительно вли­яние на образование NО оказывает неравномерность температурного поля в зоне продуктов сгорания и присутствие паров воды, которая в цепной реак­ции окисления NOx является ингибитором.

Высокая интенсивность процесса нагревания, а затем охлаждения смеси газов в цилиндре ДВС приводит к образованию существенно неравновесных концентраций реагирующих веществ. Происходит замораживание (закалка) образовавшегося NО на уровне максимальной концентрации, кото­рый обнаруживается в отработавших газах из-за резкого замедления скорости разложения NО.

Основными соединениями свинца в отработавших газах автомобилей являются хлориды и бромиды, а также (в меньших количествах) оксиды, суль­фаты, фториды, фосфаты и некоторые их промежуточные соединения, которые при температуре ниже 370°С находятся в виде аэрозолей или твердых частиц. Около 50% свинца остается в виде нагара на деталях двигателя и в выхлопной трубе, остаток уходит в атмосферу с отработавшими газами.

Большое количество соединений свинца выбрасывается в воздух при использовании этого металла в качестве антидетонатора. В настоящее время соединения свинца в качестве антидетонаторов не применяются.

Оксиды серы

Оксиды серы образуются при сгорании серы, содержащейся в топливе по механизму схожему с образованием СО.

Концентрацию токсичных компонентов в отработавших газах оценивают в объемных процентах, миллионных долях по объему – млн -1, (частей на мил­лион, 10000 ррm = 1% по объему) и реже в миллиграммах на 1 л отработавших газов.

Кроме отработавших газов, источниками загрязнения окружающей среды автомобилями с карбюраторными двигателями являются картерные газы (при отсутствии замкнутой вентиляции картера двигателя, а также испарение топлива из топливной системы.

Давление в картере бензинового двигателя, за исключением такта впуска, значительно меньше, чем в цилиндрах, поэтому часть топливовоздушной смеси и отработавших газов прорывается через неплотности цилиндропоршневой группы из камеры сгорания в картер. Здесь они смешиваются с па­рами масла и топлива, смываемого со стенок цилиндра холодного двигателя. Картерные газы разжижают масло, способствуют конденсации воды, старе­нию и загрязнению масла, повышают его кислотность.

В дизельном двигателе во время такта сжатия в картер прорывается чи­стый воздух, а при сгорании и расширении – отработавшие газы с концентрациями токсичных веществ, пропорциональными их концентрациям в цилинд­ре. В картерных газах дизеля основные токсичные компоненты – оксиды азота (45…80%) и альдегиды (до 30%). Максимальная токсичность картерных газов дизелей в 10 раз ниже, чем отработавших газов, поэтому доля картерных газов у дизеля не превышает 0,2…0,3% суммарного выброса токсичных веществ. Учитывая это, в автомобильных дизелях принудительную вентиляцию карте­ра обычно не применяют.

Основные источники топливных испарений – топливный бак и система питания. Более высокие температуры подкапотного пространства, обусловленные более нагруженными режимами работы двигателя и относительной стесненнос­тью моторного отсека автомобиля, вызывают значительные топливные испаре­ния из топливной системы при остановке горячего двигателя. Учитывая большой выброс углеводородный соединений в результате топливных испарений все производители автомобилей в настоящее время применяют специальные системы их улавливания.

Кроме углеводородов, поступающих из системы питания автомобилей, значительное загрязнение атмосферы летучими углеводородами автомобиль­ного топлива происходит при заправке автомобилей (в среднем 1,4 г СН на 1 л заливаемого топлива). Испарения вызывают также физические изменения в самих бензинах: вследствие изменения фракционного состава повышается их плотность, ухудшаются пусковые качества, снижается октановое число бен­зинов термического крекинга и прямой перегонки нефти. У дизельных автомо­билей топливные испарения практически отсутствуют вследствие малой ис­паряемости дизельного топлива и герметичности топливной системы дизеля.

Оценка уровня загрязнения атмосферы производится сопоставлением измеренной и предельно допустимой концентрации (ПДК). Значения ПДК устанавливаются для различных токсичных веществ при постоянном, среднесуточном и разовом действиях. В таблице приведены среднесуточные значения ПДК для некоторых токсичных веществ.

Таблица. Допустимые концентрации токсичных веществ

По данным исследований, легковой автомобиль при среднегодовом про­беге 15 тыс. км «вдыхает» 4,35 т кислорода и «выдыхает» 3,25 т углекислого газа, 0,8 т оксида углерода, 0,2 т углеводородов, 0,04 т оксидов азота. В отли­чие от промышленных предприятий, выброс которых концентрируется в опре­деленной зоне, автомобиль рассеивает продукты неполного сгорания топлива практически по всей территории городов, причем непосредственно в призем­ном слое атмосферы.

Удельный вес загрязнений автомобилями в крупных городах достигает больших значений.

Таблица. Доля автомобильного транспорта в общем загрязнении атмосферы в крупнейших городах мира, %

Токсичные компоненты отработавших газов и испарения из топливной системы отрицательно воздействуют на организм человека. Степень воздей­ствия зависит от их концентраций в атмосфере, состояния человека и его ин­дивидуальных особенностей.

Оксид углерода

Оксид углерода (СО) – бесцветный, не имеющий запаха газ. Плот­ность СО меньше, чем воздуха, и поэтому он легко может распространятся в атмосфере. Поступая в организм человека с вдыхаемым воздухом, СО сни­жает функцию кислородного питания, вытесняя кислород из крови. Это объясняет­ся тем, что поглощаемость СО кровью в 240 раз выше поглощаемости кисло­рода. Прямое влияние оказывает СО на тканевые биохимические процессы, влекущие за собой нарушение жирового и углеводного обмена, витаминного баланса и т.д. В результате кислородного голодания токсический эффект СО связан с непосредственным влиянием на клетки центральной нервной системы. Повышение концентрации окиси углерода опасны и тем, что в результате кислородного голодания организма ослабляется внимание, замедля­ется реакция, падает работоспособность водителей, что влияет на безопас­ность дорожного движения.

Характер токсического воздействия СО можно проследить по диаграмме, представленной на рисунок.

Рис. Диаграмма воздействия СО на организм человека:
1 – смертельный исход; 2 – смертельная опасность; 3 – головная боль, тошнота; 4 – начало токсического действия; 5 – начало заметного действия; 6 – незаметное действие; Т,ч - время воздействия

Из диаграммы следует, что даже при незначительной концентрации СО в воздухе (до 0,01%) длительное воздействие его вызывает головную боль и приводит к снижению работоспо­собности. Более высокая концентрация СО (0,02…0,033%) приводит к развитию атеросклероза, возникновению инфаркта миокарда и развитию хронических легочных заболеваний. Причем особенно вредно воздействие СО на людей, страдающих коронарной недос­таточностью. При концентрации СО около 1% наступает потеря сознания уже через несколько вздохов. СО ока­зывает негативное влияние и на нервную систему человека, вызы­вая обмороки, а также изменения цветовой и световой чувстви­тельности глаз. Симптомы отравления СО – головная боль, серд­цебиение, затрудненное дыхание и тошнота. Следует отметить, что при сравнительно небольших концентрациях в атмосфере (до 0,002%), СО связанный с гемоглобином, посте­пенно выделяется и кровь человека очищается от него на 50% каж­дые 3-4 ч.

Углеводородные соединения

Углеводородные соединения по их биологическому действию изуче­ны пока еще недостаточно. Однако экспериментальные исследования пока­зали, что полициклические ароматические соединения вызывали раку живот­ных. При наличие определенных атмосферных условий (безветрие, напряжен­ная солнечная радиация, значительная температурная инверсия) углеводоро­ды служат исходными продуктами для образования чрезвычайно токсичных продуктов – фотооксидантов, обладающих сильными раздражающим и обще­токсичным действием на органы человека, и образуют фотохимический смог. Особенно опасными из группы углеводородов являются канцерогенные веще­ства. Наиболее изученным является многоядерный ароматический углеводо­род бенз(а)пирен, известный еще под названием 3,4 бенз(а)пирен, – вещество, представляющее собой кристаллы желтого цвета. Установлено, что в местах непосредственного контакта канцерогенных веществ с тканью появляются злокачественные опухоли. В случае попадания канцерогенных веществ, осев­ших на пылевидных частицах, через дыхательные пути в легкие они задержи­ваются в организме. Токсичными углеводородами являются также и пары бен­зина, попадающие в атмосферу из топливной системы, и картерные газы, вы­ходящие через вентиляционные устройства и неплотности в соединениях от­дельных узлов и систем двигателя.

Оксид азота

Оксид азота – бесцветный газ, а диоксид азота – газ красно-бурого цвета с характерным запахом. Оксиды азота при попадании в организм чело­века соединяются с водой. При этом они образуют в дыхательных путях со­единения азотной и азотистой кислот, раздражающе действуя на слизистые оболочки глаз, носа и рта. Оксиды азота участвуют в процессах, ведущих к образованию смога. Опасность их воздействия заключается в том, что от­равление организма проявляется не сразу, а постепенно, причем нет каких-либо нейтрализующих средств.

Сажа

Сажа при попадании в организм человека вызывает негативные послед­ствия в дыхательных органах. Если относительно крупные частицы сажи раз­мером 2…10 мкм легко выводятся из организма, то мелкие размером 0,5…2 мкм задерживаются в легких, дыхательных путях, вызывают аллергию. Как любая аэрозоль, сажа загрязняет воздух, ухудшает видимость на дорогах, но, самое главное, на ней адсорбируются тяжелые ароматические-углеводороды, в том числе бенз(а)пирен.

Сернистый ангидрид SО2

Сернистый ангидрид SО2 – бесцветный газ с острым запахом. Раз­дражающее действие на верхние дыхательные пути объясняется поглощение SO2 влажной поверхностью слизистых оболочек и образованием в них кислот. Он нарушает белковый обмен и ферментативные процессы, вызывает раз­дражение глаз, кашель.

Диоксид углерода СО2

Диоксид углерода СО2 (углекислый газ) – не оказывает токсического действия на ор­ганизм человека. Он хорошо поглощается растениями с выделени­ем кислорода. Но при наличии в атмосфере земли значительного количества углекислого газа, поглощающего солнечные лучи, соз­дается парниковый эффект, приводящий к так называемому «теп­ловому загрязнению». Вследствие этого явления повыша­ется температура воздуха в нижних слоях атмосферы, происходит потепление, наблюдаются различные климатические аномалии. Кроме того, повышение содержания в атмосфере СО2 способствует образованию «озоновых» дыр. При снижении концентрации озона в атмосфере земли повышается от­рицательное воздействие жесткого ультрафиолетового излучения ни организм человека.

Автомобиль является источником загрязнения воздуха также пылью. Во время езды, особенно при торможении, в результате трения покрышек о поверхность дороги образует­ся резиновая пыль, которая постоянно присутствует в воздухе на магистралях с интенсивным движением. Но покрышки не являются единственным источни­ком пыли. Твердые частицы в виде пыли выделяются с отработавшими газами, завозятся в город в виде грязи на кузовах автомобилей, образуются от истира­ния дорожного покрытия, поднимаются в воздух вихревыми потоками, возника­ющими при движении автомобиля, и т.д. Пыль отрицательно сказывается на здоровье человека, губительно действует на растительный мир.

В городских условиях автомобиль является источником согревания ок­ружающего воздуха. Если в городе одновременно движется 100 тыс. автома­шин, то это равно эффекту, производимому 1 млн. л горячей воды. Отработав­шие газы автомобилей, содержащие теплый водяной пар, вносят свой вклад в изменение климата города. Более высокие температуры пара усиливают пе­ренос тепла движущейся средой (термическая конвекция), в результате чего количество осадков над городом возрастает. Влияние города на количество осадков особенно отчетливо видно по их закономерному увеличению, проис­ходящему параллельно с ростом города. За десятилетний период наблюде­ний в Москве, например, выпадало 668 мм осадков в год, в ее окрестностях – 572 мм, в Чикаго – 841 и 500 мм соответственно.

К числу побочных проявлений деятельности чело­века относятся и кислотные дожди – растворенные в атмосферной влаге продукты сгорания – оксиды азота и серы. В основном это относится к промышлен­ным предприятиям, выбросы которых отводятся высо­ко над уровнем поверхности и в составе которых мно­го оксидов серы. Вредное воздействие кислотных дож­дей проявляется в уничтожении растительности и ускорении коррозии металлических конструкций. Важным фактором здесь является и то, что кислотные дожди способны вместе с движением атмосферных воздушных масс преодолевать расстояния в сотни и тысячи километров, пересекая границы государств. В периодической печати появляются сообщения о кислотных дождях, выпадающих в разных странах Европы, в США, Канаде и замеченных даже в таких заповедных зонах, как бассейн Амазонки.

Неблагоприятное воздействие на окружающую среду оказывают температурные инверсии – особое состояние атмосферы, при котором температура воздуха с высотой увеличивается, а не уменьшается. Приземные температурные инверсии являются результатом ин­тенсивного излучения тепла поверхностью почвы, вследствие чего охлаждаются и поверхность, и прилега­ющие слои воздуха. Подобное состояние атмосферы препятствует развитию вертикальных движений воздуха, поэтому в нижних слоях накапливаются водяной пар, пыль, газообразные вещества, способствуя образованию слоев дымки и тумана, в том числе – смога.

Широкое применение соли для борьбы с гололедом на автомобильных дорогах ведет к сокращению срока службы автомобилей, вызывает неожиданные изменения в придорожной флоре. Так, в Англии отмечено появле­ние вдоль дорог растений, характерных для морских побережий.

Автомобиль – сильный загрязнитель водоемов, подземных водных ис­точников. Определено, что 1 л нефти может сделать непригодным для питья несколько тысяч литров воды.

Большой вклад в загрязнение окружающей среды вносят процессы техни­ческого обслуживания и ремонта подвижного состава которые требуют энерге­тических затрат и связаны с большим водопотреблением, выбросом загрязняю­щих веществ в атмосферу, образованием отходов, в том числе токсичных.

При выполнении технического обслуживания транспортных средств за­действованы подразделения, зоны периодических и оперативных форм тех­нического обслуживания. Выполнение ремонтных работ ведется на производ­ственных участках. Используемые в процессах ТО и ремонта технологичес­кое оборудование, станки, средства механизации и котельные установки яв­ляются стационарными источниками загрязняющих веществ.

Таблица. Источники выделения и состав вредных веществ в производственных процессах на эксплуатационных и ремонтных предприятиях транспорта

Название зоны, участка, отделения

Производственный процесс

Используемое оборудование

Выделяющиеся вредные вещества

Участок мойки подвижного состава

Омывка наружных поверхностей

Механическая мойка (моечные машины), шланговая мойка

Пыль, щелочи, поверхностно-активные синтетические вещества, нефтепродукты, растворяемые кислоты, фенолы

Зоны технического обслуживания, участок диагностики

Техническое обслуживание

Подъемно-транспортирующие устройства, смотровые канавы, стенды, оборудование для замены смазки, комплектующих, система вытяжной вентиляции

Оксид углерода, углеводороды, оксиды азота, масляный туман, сажа, пыль

Слесарно-механическое отделение

Слесарные, расточные, сверлильные, строгальные работы

Токарный, вертикально-сверлильный, строгальный, фрезерный, шлифовальный и др. станки

Пыль абразивная, металлическая стружка, масляный туман, эмульсии

Элсктротехничсское отделение

Заточные, изолировочные, обмоточные работы

Заточной станок, электролудильные ванны, оборудование для пайки, стенды испытаний

Абразивная и асбестовая пыль, канифоль, пары кислот, третник

Аккумуляторный участок

Сборочно-разборочные и зарядные работы

Ванны для промывки и очистки, сварочное оборудование, стел- лажи, система вы­тяжной вентиляции

Промывочные

растворы, пары кислот, электролит, шламы, промывочные аэрозоли

Отделение топливной аппаратуры

Регулировочные и ремонтные работы по топливной аппаратуре

Проверочные стенды, специальная оснастка, система вентиляции

Бензин, керосин, дизельное топливо. ацетон, бензол, ветошь

Кузнечно-рессорное отделение

Ковка, закалка, отпуск металлических изделий Кузнечный горн, термические ванны, система вытяжной вентиляции Угольная пыль, сажа, оксиды углерода, азота, серы, загрязненные сточные воды
Медницко-жестяницкое отделение Резка, пайка, правка, формовка по шаблонам Ножницы по металлу, оборудование для пайки, шаблоны, система вентиляции Пары кислот, третник, наждачная и метал­лическая пыль и отходы
Сварочное отделение Электродуговая и газовая сварка Оборудование для дуговой сварки, ацетилена — кисло­родный генератор, система вытяжной вентиляции Минеральная пыль, сварочный аэрозоль, оксиды марганца, азота, хрома, хлорис­тый водород, фториды
Арматурное отделение Резка стекол, ремонт дверей, полов, сидений, внутренней отделки Электрический и ручной инструмент, сварочное оборудование Пыль, сварочный аэрозоль, древесная и металлическая стружка, металличес­кие и пластмассовые отходы
Обойное

отделение

Ремонт и за­мена изношен­ных, повреж­денных сиде­ний, полок, кресел, диванов Швейные машины, раскройные столы, ножи для кройки и резки поролона Пыль минеральная и органическая, отходы тканей и синтетических материалов
Участок шиномонтажа и ремонта шин Разборка и сборка шин, ремонт покры­шек и камер, балансировоч­ные работы Стенды для разборки и сборки шин, оборудование для вулканизации, станки для динамической и статической балан­сировки Минеральная и резиновая пыль, сернистый ангидрид, пары бензина
Участок

лакокрасочных

покрытий

Удаление старой краски, обез­жиривание, нанесение лакокрасочных покрытий Оборудование для пневматического или безвоздушного распыления, ванны, сушильные камеры, система вентиляции Пыль минеральная и органическая, пар-растворителей и аэг золи красок, загряз­ненные сточные в^ я
Участок обкатки двигателей (для ремонтных предприятий) Холодная и горячая обкатка двигателя Стенд для обкатки, система вытяжной вентиляции Оксиды углерода, азота, углеводорода, сажа, сернистый ангидрид
Стоянки и места отстоя подвижного состава Перемещение единиц подвижного состава, ожидание Оборудованная площадка открытого или закрытого хранения Тоже

Сточные воды

При эксплуатации автомобилей образуются сточные воды. Состав и количество этих вод различны. Сточные воды возвращаются обратно в окружающую среду, главным образом в объекты гидросферы (река, канал, озеро, водохранилище) и суши (поля, накопители, подземные горизонты и др.). В зависимости от вида производства сточными водами на предприятиях транспорта могут являться:

  • сточные воды от мойки автомобилей
  • нефтесодержащие стоки от производственных участков (моющие растворы)
  • сточные воды, содержащие тяжелые металлы, кислоты, щелочи
  • сточные воды, содержащие краску, растворители

Сточные воды от мойки автомобилей составляют от 80 до 85% от объема производственных стоков автотранспортных организаций. Основными загрязнителями являются взвешенные вещества и нефтепродукты. Их содержание зависит от типа автомобиля, характера дорожного покрытия, погодных условий, характера перевозимого груза и др.

Сточные воды от мойки агрегатов, узлов и деталей (отработанные моющие растворы) отличаются наличием в них значительного количества нефтепродуктов, взвешенных веществ, щелочных компонентов и поверхностно-активных веществ.

Сточные воды, содержащие тяжелые металлы (хром, медь, никель, цинк), кислоты и щелочи наиболее характерны для авторемонтных производств, использующих гальванические процессы. Они образуются в процессе приготовления электролитов, подготовки поверхностей (электрохимическое обезжиривание, травление) гальванопокрытий и промывки деталей.

В процессе проведения малярных работ (методом пневматического распыления) 40% лакокрасочных материалов поступает в воздух рабочей зоны. При проведении этих операций в окрасочных камерах, оборудованных гидрофильтрами, 90% этого количества оседает на элементах самих гидрофильтров, 10% уносится с водой. Таким образом, в сточные воды окрасочных участков попадает до 4% израсходованных лакокрасочных материалов.

Основным направлением в области снижения загрязнения водных объектов, грунтовых и подземных вод промышленными стоками, является создание систем оборотного водоснабжения производства.

Ремонтные работы сопровождаются также загрязнением почвы, на­коплением металлических, пластмассовых и резиновых отходов вблизи про­изводственных участков и отделений.

При строительстве и ремонте путей сообщения, а также производственно-бытовых объектов предприятий транспорта происходит изъятие из экосистем воды, грунта, плодородных почв, минеральных ресурсов недр, разрушение природных ландшафтов, вмешательство в животный и растительный мир.

Шум

Наряду с другими видами транспорта, промышленным оборудованием, бытовыми приборами автомобиль является источником искусственного шу­мового фона города, как правило, отрицательно воздействующего на челове­ка. Следует отметить, что и без шума, если он не превышает допустимых пре­делов, человек чувствует дискомфорт. Не случайно исследователи Арктики не раз писали о «белом безмолвии», которое угнетающе действует на челове­ка, тогда как «шумовое оформление» природы положительно влияет на психи­ку. Однако шум искусственного происхождения, особенно сильный шум, отри­цательно влияет на нервную систему. Перед населением современных горо­дов возникает серьезная проблема борьбы с шумом, так как сильный шум не только ведет к потере слуха, но и вызывает психические расстройства. Опас­ность шумового воздействия усугубляется свойством человеческого организ­ма накапливать акустические раздражения. Под действием шума определен­ной интенсивности возникают изменения в циркуляции крови, работе сердца и желез внутренней секреции, снижается мышечная выносливость. Статисти­ческие данные свидетельствуют о том, что процент нервно-психических забо­леваний выше среди лиц, работающих в условиях повышенного уровня шума. Реакция на шум зачастую выражается в повышенной возбудимости и раздражительности, охватываю­щих всю сферу чувствительных восприятий. Люди, подвергающиеся постоян­ному воздействию шума, часто становятся трудными в общении.

Шум оказывает вредное влияние на зрительный и вестибулярный анали­заторы, снижает устойчивость ясного видения и рефлекторную деятельность. Чувствительность сумеречного зрения ослабевает, снижается чувствительность дневного зрения к оранжево-красным лучам. В этом смысле шум является кос­венным убийцей многих людей на автотранспортных магистралях мира. Это от­носится как к водителям автотранспорта, работающим в условиях интенсивного шума и вибрации, так и к жителям крупных городов с высоким уровнем шума.

Особенно вреден шум в сочетании с вибрацией. Если кратковременная вибрация тонизирует организм, то постоянная вызывает так называемую виб­рационную болезнь, т.е. целый комплекс нарушений в организме. У водителя снижается острота зрения, сужается поле видимости, может изменится вос­приятие цвета или способность оценивать расстояние до встречного автомо­биля. Нарушения эти, конечно, индивидуальны, однако для профессиональ­ного водителя они всегда нежелательны.

Опасным является также инфразвук, т.е. звук с частотой менее 17 Гц. Этот индивидуальный и неслышный враг вызывает реакции, противопоказан­ные человеку за рулем. Воздействие инфразвука на организм вызывает сон­ливость, ухудшение остроты зрения и замедленную реакцию на опасность.

Из источников шума и вибрации в автомобиле (коробка передач, задний мост, карданный вал, кузов, кабина, подвеска, а также колеса, шины) основным является двигатель с его системами впуска и выпуска, охлаждения и питания.

Рис. Анализ источников шума грузового автомобиля:
1 – суммарный шум; 2 – двигатель; 3 – система выпуска отработавших газов; 4 – вентилятор; 5 – впуск воздуха; 6 – остальное

Тем не менее, при скорости движения автомобиля более 50 км/ ч преобладающим является шум создаваемый шинами автомобиля, который увеличивается пропорционально скорости движения.

Рис. Зависимость шума автомобиля от скорости движения:
1 – диапазон рассеивания шума из-за разных сочетаний дорожных покрытий и шин

Совокупное действие всех источников акустического излучения и приво­дит к тем высоким уровням шума, которыми характеризуется современный автомобиль. Эти уровни зависят и от других причин:

  • состояния дорожного по­крытия
  • скорости и изменения направления движения
  • изменения частоты вра­щения коленчатого вала двигателя
  • нагрузки
  • и т.д.

Одним из мощных источников загрязнения городской воздушной среды является автомобильный транспорт, увеличение численности которого привело к насыщению городов легковыми автомобилями и переключению на них большей части пассажирских перевозок. Это резко ухудшает санитарные условия проживания в крупных городах: автомобиль не только загрязняет воздушную среду и создает шум, но, перевозя небольшое число пассажиров и работая на наиболее ценных видах топлива, использует его недостаточно эффективно. В связи с этим возникла необходимость разработки ряда мероприятий, позволяющих предотвратить загрязнение окружающей среды от автотранспорта.

С целью снижения негативного воздействия автотранспорта на атмосферный воздух в рамках представленной классификационной схемы (рис. 3) предусмотрены организационные (архитектурно-планировочные), технологические и специальные инженерно-экологические мероприятия.

Организационные мероприятия включают специальные приемы застройки и озеленение автомагистралей, размещение жилой застройки по принципу зонирования (в первом эшелоне застройки - от магистрали - размешаются здания пониженной этажности, затем - дома повышенной этажности и в глубине застройки - детские и лечебно-оздоровительные учреждения. Тротуары, жилые, торговые и общественные здания изолируются от проезжей части улиц с напряженным движением многорядными древесно-кустарниковыми посадками). Важное значение имеют сооружение транс-портных развязок, кольцевых дорог, использование подземного пространства для размещения гаражей и автостоянок.

Наибольший выброс выхлопных газов имеет место при задержках машин у светофоров, при стоянке с не выключенным двигателем в ожидании зеленого света, при трогании с места и форсировании работы мотора. Поэтому в целях снижения выбросов необходимо устранить препятствия на пути свободного движения потока автомашин. В частности, сооружают специальные автомагистрали, не пересекающиеся на одном уровне с движением машин или пешеходов, специальные переходы для пешеходов на всех пунктах скопления машин, а также эстакады или тоннели для разгрузки перекрывающихся потоков транспорта.

Для снижения загазованности воздушной среды необходимо ограничить количество вредных веществ, выделяемых каждым автомобилем, т.е. установить нормы выброса токсичных веществ с выхлопными газами. Соответствие автомобилей указанным стандартам (в частности, по содержанию оксида углерода и углеводородов в выхлопных газах) проверяют инспектора ГИБДД.

В качестве технологических мероприятий, которые могут резко снизить токсичность выхлопных газов, можно выделить следующие:


Регулировка двигателей;

Изменение состава топлива;

Использование энергии торможения;

Перевод автомобилей на сжиженный газ;

Совершенствование двигателей внутреннего сгорания;

Применение альтернативных видов топлива;

Внедрение гибридных двигателей;

Внедрение в эксплуатацию электромобилей, солнечных автомобилей, а также применение электрического транспорта и др.

Изменение состава топлива. Известно, что в целях предотвращения детонации горючего в двигателях автомашин в него добавляют тетраэтилсвинец , который делает выхлопные газы особо токсичными. Поэтому большие усилия были затрачены на замену указанного вещества на менее опасные, а также на получение стойкого к детонации бензина. При введении в топливо т.н. присадок можно существенно уменьшить количество некоторых токсичных веществ: сажи, альдегидов , оксида углерода и других. Так, для карбюраторных, двигателей самым эффективным оказались смеси различных спиртов.

Использование энергии торможения. Заметного сокращения расхода энергии, а значит, количества сжигаемого топлива и уменьшения загрязнения воздушной среды можно достичь, если использовать энергию, затрачиваемую на торможение. Указанная рекуперация была впервые успешно реализована на электрическом транспорте. Ныне были построены и успешно использованы на автобусах маховичный и гидропневматический рекуператоры. При этом экономия топлива составила 27-40%. объем выхлопных газов снизился на 39-49%.

Перевод автомобилей на сжиженный газ приводит к тому, что в выхлопе газобаллонных автомобилей содержится в 3-4 раза меньше оксида углерода, нежели в выхлопе бензиновых двигателей. При загрузке в баллоны 300 л сжиженного газа автобус способен пройти без заправки до 500 км. Если добавить к этому, что газ дешевле бензина, то достоинства газобаллонного автомобиля становятся еще более наглядными.

Совершенствование двигателей внутреннего сгорания. Например, в США разработан карбюратор с раздельным смесеобразованием. Он позволяет кроме обычной смеси получать обогащенную, которая подается в специальную предкамеру со свечой зажигания. Благодаря этому происходит полное сгорание рабочей смеси, что, в свою очередь, позволяет свести до минимума содержание оксида углерода и углеводородов в выхлопных газах. Создан карбюратор, благодаря которому возможно использовать низкооктановые сорта бензина без антидетонационных добавок. В этом устройстве, со-стоящем из теплообменника, смесителя и реактора, бензин не только распыляется, но и расщепляется с помощью катализатора на более простые газы, например метан .

Во многих странах мира разрабатываются новые, более совершенные двигатели, которые можно устанавливать на серийных автомобилях. В частности, указывают на перспективность роторно-поршневого двигателя Ванкеля, который компактнее поршневых двигателей: объем в среднем на 30%, а масса на 11 % меньше.

Альтернативное топливо. Весьма перспективным заменителем традиционного топлива для автомобилей является водород. Двигатель, работающий на жидком водороде , не дает никаких запахов, не выделяет таких токсичных веществ, как свинец, оксиды азота, углерода. Жидкий водород почти в десять раз легче бензина. На одном из международных автомобильных конкурсов первое место занял «Фольксваген», для которого топливом служил водород. Интересно, что его отработанные газы были чище городского воздуха, который засасывался в карбюратор.

Признаётся перспективным автомобиль с размещенным на его шасси химическим реактором, в котором вырабатывается водород из углеводородов. Расчеты показали, что иметь такой реактор на машине экономичнее, нежели возить это топливо в специальных баллонах.

Преградами на пути широкого внедрения водорода в качестве топлива для автомобильных двигателей является сложность получения его в достаточно больших количествах и необходимость обеспечения высокого уровня безопасности при осуществлении процесса горения водорода.

К другим видам альтернативного топлива можно отнести этиловый и метиловый спирты и их смеси. В США создан двигатель, в котором вместо бензина используется жидкий азот. Бак с охлажденным до жидкого состояния азотом соединен с испарителем, окруженным «рубашкой», в которой циркулирует воздух. Жидкий азот , попадая в испаритель, превращается вследствие быстрого повышения температуры в газ, который выходит под большим давлением из испарителя и приводит в действие электрогенератор. Вырабатываемый последним ток после выпрямления подается для питания электродвигателей, установленных на колесах. Выхлопные газы такого автомобиля состоят из чистого азота, который, естественно, не загрязняет атмосферу.

Перспективно широкое внедрение так называемых гибридных двигателей: в городе при относительно небольших скоростях должен использоваться только электромотор, питающийся от небольших батарей и обеспечивающий запас хода на 40-50 км, а при выезде за город должен включаться обычный двигатель. Одновременно электромотор может быть использован как генератор для подзарядки аккумулятора.

Электромобили. Весьма перспективным является проект массового перехода от автомобилей с бензиновыми и дизельными двигателями на электромобили, которые действуют от батарей - аккумуляторов, подзаряжаемых на станциях.

Электромобили бездымны, бесшумны, их выделения нетоксичны, они просты в управлений, а эксплуатация значительно экономичнее, особенно в городах. Этому способствует относительно небольшой среднесуточный пробег автомобилей в городе, ограничение скорости и возможность организации сети зарядных станций для батарей - аккумуляторов. Сейчас в мире эксплуатируется сотни тысяч электромобилей различного назначения, и парк их непрерывно растет.

Дальнейшие успехи в разработке электромобилей в основном, будут зависеть от решения ряда технических проблем (создания компактных, недорогих и легких аккумуляторов, разработка быстродействующих зарядных устройств). Укажем также на необходимость резкого уве-личения резервных мощностей электростанций, поскольку они недостаточны, если потребуется в перспективе ежедневная подза-рядка многих миллионов электромобилей.

Солнечный автомобиль использует солнечную (или световую) энергию, которая улавливается при помощи специальных солнечных батарей . Электромобиль на спиральных гидридно-никелевых батареях прошел несколько лет назад без подзарядки 601 км.

Как же побыстрее и подешевле создать массовый экологически чистый автомобиль? Прежде всего, считают специалисты, необходимо усовершенствовать существующие конструкции: постараться уменьшить расход топлива, само топливо сделать, более приемлемым с точки зрения чистоты выхлопов, добиться снижения сопротивления воздуха, так как оно при больших скоростях современных автомобилей отбирает большую долю энергии. Можно ис-пользовать новые, например, керамические материалы для двигателей, чтобы повысить их КПД (из-за достижения более высоких температур), что приведет к снижению потребления топлива и, соответственно, к уменьшению загрязнения атмосферного воздуха. Начиная с 1998 г. компании «Дженерал моторе», «Форд» и «Крайслер» начали реализовывать программу выпуска экологичных автомобилей.

Улучшению качества атмосферного воздуха в сочетании со снижением шума способствует применение электрического транспорта (трамвая, троллейбуса).

Специальными инженерно-техническими мероприятиями, снижающими выбросы токсичных веществ от автотранспорта как основного передвижного источника, дающего наибольший вклад в загрязнение атмосферы, является применение нейтрализаторов, катализаторов.

Нейтрализаторы выхлопных газов. К настоящему времени выпускаются нейтрализаторы следующих видов: каталитические (используются твердые катализаторы), пламенные (дожигание примесей в открытом пламени), термические (метод беспламенного окисления) и жидкостные (с помощью химического связывания примесей жидкими реагентами). При этом широкое распространение получили каталитические нейтрализаторы, которые превращают токсичный оксид углерода в малоопасный диоксид.

Макаров Ваня

Автотранспорт является одним из основных загрязнителей атмосферы оксидам азота и угарным газом, содержащихся в выхлопных газах. Количество автотранспорта растет из года в год, что непременно приводит к загрязнению окружающего воздуха.

К основным проблемам автотранспортного загрязнения в Нижнем Новгороде относят повышение количества автотранспорта на душу населения, не соблюдение правил техобслуживания автомашин, проблема парковок, неразвитость объездных дорог, качество самих дорог.

В ходе исследования решал следующие задачи

  1. Изучить общие тенденции автотранспортного загрязнения.
  2. Ознакомиться с влиянием вредных выбросов автотранспорта на здоровье человека.
  3. Проанализировать количество выбросов вредных веществ в воздух от автотранспорта на выбранных участках.

Скачать:

Предварительный просмотр:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ НИЖЕГОРОДСКОЙ ОБЛАСТИ

Муниципальное образовательное учреждение

лицей №28 имени Б.Н. Королева

Изучение и оценка выбросов от автомобильного транспорта на участке, прилегающем к лицею № 28.

Выполнил:

ученик 9А класса

Макаров Иван.

Научный руководитель:

Учитель биологии и экологии

Плаксина Татьяна Юрьевна.

Нижний Новгород

2010

Cодержание

Введение………………………………………………………….………….3

  1. Влияние вредных выбросов автотранспорта на здоровье человека…...5
  1. Влияние газообразных веществ, образующихся при сгорании автомобильного топлива, на состояние здоровья человека.

1.1.1.Влияние диоксида азота NO 2. …………………………….…..6

. …………………………………8

……………………………..……..…8

  1. Влияние пыли, образующейся при движении автотранспорта, на состояние здоровья человека

1.2.1. Влияние резиновой пыли………...……………………………9

1.2.2. Влияние асбестовой пыли……………………………………10

2. Основные проблемы автотранспортного загрязнения в городе………11

3. Методика исследования…………………………………………………..13

4. Расчётная оценка количества выбросов вредных газообразных веществ в воздух от автотранспорта на микроучастке МОУ лицей №28………15

5. Обработка результатов и выводы…………………………………….….24

Список литературы…………………………………………………………27

Введение.

Автомобильный транспорт занимает важное место в единой транспортной системе страны. Он перевозит более 80% народнохозяйственных грузов. Высокая мобильность, способность оперативно реагировать на изменения пассажиропотоков ставят автомобильный транспорт вне конкуренции при организации местных перевозок пассажиров. На его долю приходится почти половина пассажирооборота .

Однако какова плата за эти несомненные успехи человечества? Автотранспорт является одним из основных загрязнителей атмосферы оксидам азота и угарным газом, содержащихся в выхлопных газах. Доля транспортного загрязнения воздуха составляет более 60% по СО и более 50% по NO х от общего загрязнения атмосферы этими газами. Повышенное содержание СО и NО х можно обнаружить в выхлопных газах не отрегулированного двигателя, а также в двигателях в режиме прогрева.

Выбросы вредных веществ от автотранспорта характеризуются количеством основных загрязнителей воздуха, попадающих в атмосферу из выхлопных газов, за определённый промежуток времени.

К выбрасываемым вредным веществам относятся угарный газ (концентрация в выхлопных газах 0,3 - 10%), углеводороды - несгоревшее топливо (до 3%) и оксида азота (до 0,8%), сажа .

До 85% всех заболеваний современного человека связано с неблагоприятными условиями окружающей среды. В данной связи заболевания человека, связанные с выбросами в воздух вредных веществ от автотранспорта, представляют наиболее серьёзную угрозу.

Цель исследования: оценка количества выбросов вредных веществ от автотранспорта на микроучастке МОУ лицея №28.

Задачи:

  1. Изучить общие тенденции автотранспортного загрязнения.
  2. Ознакомиться с влиянием вредных выбросов автотранспорта на здоровье человека.
  3. Проанализировать количество выбросов вредных веществ в воздух от автотранспорта на выбранных участках.

Гипотеза: применение математических методов учета выбросов автомобильного транспорта позволяет создать точную картину распределения автомобильного загрязнения на микроучастке МОУ лицея №28.

1. Влияние вредных выбросов автотранспорта на здоровье человека.

На протяжении всего ХХ века производство автомобилей стремительно возрастало. В 1998 г. По дорогам Мира ездило уже 700 млн. автомобилей. К 2010 году предположительно эта цифра достигла миллиардной отметки. Такое распространение автомобиль получил главным образом, благодаря качествам установленного на нем двигателя. При сравнительно небольшой массе он развивает мощность, достаточную для быстрой езды, потребляя при этом не так уж много топлива: одной заправки хватает на 400-500 км. Двигатель готов к работе и зимой и летом.

Все было хорошо, пока автомобилей не стало слишком много. В столицах развитых стран на каждую тысячу жителей приходиться более 300 автомобилей. Очевидно, что при таком количестве машин, выхлопные газы загрязняют окружающий воздух настолько, что это причиняет ощутимый вред здоровью людей и природе. Среди множества различных газов и химических соединений, выбрасываемых автомобилем, есть и токсичные вещества .

1.1. Влияние газообразных веществ, образующихся при сгорании автомобильного топлива, на состояние здоровья человека.

Автотранспорт является одним из крупнейших загрязнителей атмосферного воздуха. В России на его долю в середине 90-х годов приходилось 80% выбросов свинца, 59% - оксида углерода, 32% - оксидов азота. В Российской Федерации насчитывается более 150 городов с превалирующим вкладом выбросов автотранспорта в валовые выбросы (более 50%).

Даже в условиях экономического спада загрязнение природных сред в городах, как показывают наблюдения, не уменьшается. Это связано с особенностями автотранспорта как источника выбросов и сбросов загрязняющих веществ в атмосферу, отличающими их от стационарных (промышленных) источников выбросов.

Специфика подвижных источников загрязнения (автомобилей) проявляется в низком расположении пространственной распределённости и непосредственной близости к жилым районам. В результате при общей доле транспорта в массовом выбросе загрязняющих веществ в атмосферу, равной 35-60%, доля транспортных средств в загрязнении воздуха в городах достигает 70-90%. Все это приводит к тому, что автотранспорт создает в городах обширные и устойчивые зоны, в пределах которых в несколько раз превышаются санитарно-гигиенические нормативы загрязнения воздуха.

Длительный контакт со средой, отравленной выхлопными газами автомобилей, вызывает общее ослабление организма – иммунодефицит. Кроме того, газы сами по себе могут стать причиной различных заболеваний. Например, дыхательной недостаточности, гайморита, ларинготрахеита, бронхита, бронхопневмонии, рака лёгких. Кроме того, выхлопные газы вызывают атеросклероз сосудов головного мозга. Опосредованно через легочную патологию могут возникнуть и различные нарушения сердечно-сосудистой системы. при длительном нахождении на оживленной дороге или рядом с ней.

К числу приоритетных загрязнителей атмосферы, поступающих в городскую атмосферу с отработавшими газами автомобилей, относятся диоксид азота, угарный газ и летучие углеводороды. Кроме этого, перечисленные газообразные вещества наиболее опасны для здоровья людей.

Рассмотрим влияние вредных газообразных веществ, образующихся при сгорании автомобильного топлива, на состояние здоровья человека.

1.1.1. Влияние диоксида азота NO 2.

Динамика концентраций оксидов азота в городском воздухе в течение суток тесно связана с интенсивностью солнечного излучения и движения транспорта. С нарастанием интенсивности автомобильного движения (с 6 до 8 часов утра) концентрации первичного загрязнителя - оксида азота (NO) заметно увеличиваются. Восход солнца влечет за собой накопление в атмосфере диоксида азота (NO 2 ) вследствие фотохимического окисления оксида азота. Оксиды азота являются серьезными атмосферными загрязнителями в связи с их высокой токсичностью.

Средние концентрации диоксида азота заметно возрастают с севера на юг, вследствие влияния солнечной радиации на фотохимические реакции перехода оксидов азота в диоксид. В более южных городах средние концентрации NO 2 выше 40 мкг/ м 3 , поэтому для нашего региона проблема выбросов диоксида азота наиболее актуальна.

При небольших концентрациях диоксида азота NO 2 наблюдается нарушение дыхания, кашель. ВОЗ рекомендовало не превышать 400 мкг/м 3 , поскольку выше этого уровня наблюдаются болезненные симптомы у больных астмой и других групп людей с повышенной чувствительностью. При средней за год концентрации, равной 30 мкг/м 3 увеличивается число детей с учащенным дыханием, кашлем и больных бронхитом.

При контакте оксидов азота с влажной поверхностью легких образуются HNO 3 (азотная кислота) и HNO 2 (азотистая кислота), поражающие ткань легких, что приводит к отеку легких и сложным рефлекторным расстройствам. При отравлении оксидами азота в крови образуются нитраты и нитриты. Последние, действуя непосредственно на артерии, вызывают расширение сосудов и снижение кровяного давления. Попадая в кровь, нитриты препятствуют поступлению кислорода в организм, что приводит к кислородной недостаточности.

Таким образом, диоксид азота воздействует в основном на дыхательные пути и легкие, а также вызывает изменения состава крови, в частности, уменьшает содержание в крови гемоглобина.

В специальной литературе также указывается на то, что воздействие на организм человека диоксида азота снижает сопротивляемость к заболеваниям, вызывает кислородное голодание тканей, особенно у детей. Также систематическое вдыхание диоксида азота усиливает действие канцерогенных веществ, способствуя возникновению злокачественных новообразований.

1.1.2. Влияние угарного газа (СО) .

Угарный газ попадает в атмосферный воздух при любых видах горения. В городах его источником являются в основном выхлопные газы от автотранспорта. На крупных автострадах средняя концентрация СО превышает порог отравления, симптомами которого являются головная боль и удушье, стук в висках, головокружение, боли в груди, сухой кашель, слезотечение, тошнота, рвота.

Причинами такого влияния на организм является способность угарного газа связываться с гемоглобином крови, образуя карбоксигемоглобин и блокируя передачу кислорода тканевым клеткам. Это приводит к гипоксии гемического типа. Угарный газ также включается в окислительные реакции, нарушая биохимическое равновесие в тканях.

1.1.3. Влияние углеводородов .

Токсичность различных углеводородов сильно отличается. Наиболее опасны непредельные углеводороды, которые в присутствии диоксида азота фотохимически окисляются, образуя ядовитые кислородсодержащие соединения - составляющие смогов. Смог является причиной головной боли, заболеваний глаз и дыхательной системы. Обнаруженные в газах полициклические ароматические углеводороды - также сильные канцерогены. Особенно опасно систематическое отравление, приводящее к накоплению углеводородов, что обуславливает проявление мутагенеза, тератогенеза (врождённые дефекты у детей), развитие опухолей, бесплодие, заболевания почек, печени желудка. Отмечены случаи нарушения неврологического, физиологического и биохимического функционирования.

Проведённый анализ влияния выхлопных газов на здоровье человека позволяет сделать вывод, что данный источник загрязнений может считаться одним из наиболее опасных. Его действию подвержено подавляющее большинство населения не только индустриальных центров, но и небольших населённых пунктов.

1.2. Влияние пыли, образующейся при движении автотранспорта, на состояние здоровья человека.

Запылённость воздуха – важнейший экологический фактор, сопровождающий нас повсюду. Пылью считаются любые твёрдые частицы, взвешенные в воздухе. Безвредной пыли не существует. Экологическая опасность пыли для человека определяется их природой и концентрацией в воздухе.

При движении автотранспорта наибольшую опасность для здоровья человека представляют резиновая и асбестовая пыль.

1.2.1. Влияние резиновой пыли.

Независимые исследования американских и шведских специалистов, проведенные в 1990 году, показали, что автомобильные покрышки вреднее для здоровья человека, чем автомобильные выхлопные газы. Дело в том, что пыль, возникающая вследствие износа резины, вдыхается вместе с воздухом и может вызывать серьёзные заболевания. В первую очередь, это сказывается на состоянии людей, склонных к аллергии и бронхиальной астме. Только в Швеции в атмосферу выбрасывается около 10 тысяч тонн резиновой пыли ежегодно. В Лос-Анджелесе эта цифра достигает 5 тысяч тонн, притом, что Лос-Анджелес считается экологически чистым городом. Во всём мире количество этих выбросов составляет более миллиона тонн. Подсчитано, что каждый день житель Швеции вдыхает 6 г резиновой пыли, американец – 13 г, а россиянин – до 20 г.

Реакции организма на загрязнения воздуха резиновой пылью зависят от индивидуальных особенностей человека: возраста, пола, состояния здоровья. Как правило, более уязвимы дети, пожилые и престарелые, люди с заболеваниями органов дыхания, аллергики.

При систематическом или периодическом поступлении в организм человека сравнительно небольших количеств компонентов резиновой пыли происходит хроническое отравление. Признаками такого отравления являются нарушения поведения, привычек, нейропсихические отклонения: быстрое утомление, чувство постоянной усталости, сонливость или, наоборот, бессонница, апатия, ослабление внимания, забывчивость, сильные колебания настроения. Также при хроническом отравлении у разных людей могут возникнуть различные поражения почек, кроветворных органов, нервной системы, печени. Содержащиеся в резиновой пыли высокоактивные в биологическом отношении вещества могут вызвать эффект отдалённого влияния на здоровье человека: хронические воспалительные заболевания различных органов, изменение нервной системы, воздействие на внутриутробное развитие плода, приводящее к различным отклонениям у новорожденных.

По данным исследований, подобные признаки наблюдаются и при радиоактивном загрязнении окружающей среды. Таким образом, загрязнение атмосферы резиновой пылью может вызвать «эффект Чернобыля» при сохранении нормального радиационного фона.

1.2.2. Влияние асбестовой пыли.

При работе автомобильного транспорта асбестовая пыль образуется, в основном, при стирании тормозных колодок.

Асбест – это собирательный термин, обозначающий группу природных волокнистых материалов. Волокнистое строение асбеста делает возможным его расщепление на гибкие волокна микроскопической длины. При износе тормозных колодок автотранспорта хризотиловый асбест выделяется в воздух в виде мельчайших, невидимых глазу волокон. Те из них, которые имеют длину 0,005 – 0,1 мм и толщину до 0,003 мм, могут проникать в лёгкие человека. Волокна асбеста при этом внедряются в лёгочную ткань, вызывая хронические воспаления. После длительного периода (15-40 лет) это заболевание может привести к раку лёгких. По данным американских исследователей, в настоящее время 20% всех раковых заболеваний лёгких возникают по причине хронических отравлений асбестом .

2. Причины увеличения автотранспортных выбросов в Нижнем Новгороде.

Транспорт продолжает оставаться одним из основных источников загрязнения атмосферного воздуха и вредных физических воздействий на окружающую природную среду города.

На 01.01.96 г. общее количество транспортных средств (ТС), стоящих на учете в Н. Новгороде, составило 157343 единицы.

Как показывает практика, следствием разгосударствления и приватизации транспорта является ухудшение качества обслуживания автомобилей: не соблюдается периодичность и порядок техобслуживания, не проводится инструментальный контроль уровня токсичности и дымности отработавших газов. В результате не снижается количество транспортных средств, эксплуатирующихся с нарушением основных положений ПДД РФ по допуску транспортных средств к эксплуатации, с превышением норм токсичности и дымности, оказывающих повышенное шумовое воздействие на окружающую природную среду и т.д. По результатам инструментального обследования автопредприятий и транспортных цехов промпредпрятий инспекторским составом городского комитета выявлено и снято с эксплуатации свыше 1500 единиц экологически "грязного" транспорта. К этому числу надо добавить автотранспорт, проверенный в Нижнем Новгороде Нижегородоблкомприродой, Российской транспортной инспекцией, Госстандартом, ГАИ. Но окончательно побороть это зло пока не удается, ведь инспекционной проверке подвергается лишь десятая часть стоящего на учете в городе транспорта. А есть еще и иногородний, транзитный транспорт.

В последние годы становятся обыденными факты хранения, мойки, ремонта автомобилей в не отведенных для этого местах (рядом с жилыми домам, на газонах, у водоразборных колонок, в зонах отдыха), что подтверждается многочисленными жалобами и обращениями граждан. Все это также обостряет экологическую и санитарную обстановку. По-прежнему значительный вклад в загрязнение окружающей среды города вносит грузовой транспорт, в том числе иногородний и транзитный, движущийся по основным магистралям из-за отсутствия дорог-дублеров, неразвитости объездных дорог вне города. Вследствие недостаточности средств в городском бюджете сеть автодорог в городе практически не развивается.

В последние годы администрация города проводит значительные работы по реконструкции и ремонту дорожного полотна. Это ведет к снижению загрязнения и к экономии ресурсов. Однако в весенний период происходит частичное разрушение проезжей части дорог, в результате чего водители вынуждены снижать скорость, переходить на низшие передачи, а это приводит к усиленному износу транспортных средств и повышенному загрязнению атмосферного воздуха отработавшими газами.

Нижний Новгород имеет большую протяженность своей территории, поэтому актуальным является вопрос перевозки пассажиров общественным транспортом. Основную часть перевозок производит городской автобусный транспорт (свыше 55%). Проблему уменьшения загрязнения атмосферного воздуха от автотранспорта можно частично решить путем развития альтернативных видов транспорта и, в частности, электротранспорта, являющегося экологически наиболее чистым, расширения сети трамвайных и троллейбусных линий, увеличения протяженности линий метрополитена .

3. Методика исследования.

Количество выбросов вредных веществ, поступающих от автотранспорта в атмосферу, может быть оценено расчётным методом. Исходными данными для расчета количества выбросов являются:

Количество единиц автотранспорта разных типов, проезжающих по выделенному участку автотрассы в единицу времени;

Нормы расхода топлива автотранспортом (средние нормы расхода топлива автотранспортом при движении в условиях города приведены в табл.1);

таблица №1.

Значения эмпирических коэффициентов, определяющих выброс вредных веществ от автотранспорта в зависимости от вида горючего (приведены в табл.2)

таблица №2.

Коэффициент К численно равен количеству вредных выбросов соответствующего компонента в литрах при сгорании в двигателе автомашины количества топлива (также в литрах), необходимого для проезда 1 км (т.е. равного удельному расходу) .

Оборудование: блокнот, карандаш, калькулятор.

Выполнение работы:

  1. Для проведения работы были выбраны участки улиц с разной интенсивностью движения в окрестностях лицея (рис.1):

№1 – автодорога по ул. Тимирязева,

№2 – автодорога по ул. Кулибина,

№3 – автодорога ул. Студенческая,

№ 4 – автодорога проспект Гагарина.

Рис.1. Схема микроучастка МОУ лицей №28.

  1. Длина участков улиц (l х , км) измерялась парами шагов (l, м).

L = 0,55 м;

l 1 = 244 * 0,55 = 134 м = 0,134 км.

l 2 = 605 * 0,55 = 333 м = 0,333 км.

l 3 = 218 * 0,55 = 120 м = 0,12 км.

l 4 = 600 * 0,55 = 330 м = 0,33 км.

  1. Определяем количество единиц автотранспорта.

А) Подсчитываем количество единиц автотранспорта данный момент времени в течение 20 минут.

Таблица 3

Участок №1

Тип автотранспорта

Количество, шт

всего за 20 минут

За 1 час, N, шт

Общий путь за час, L, км

Легковые автомобили

105,7

Грузовые автомобили

12,8

Автобусы

Участок №2

Тип автотранспорта

Количество, шт

всего за 20 минут

За 1 час, N, шт

Общий путь за час, L, км

Легковые автомобили

19,9

Грузовые автомобили

Автобусы

Дизельные грузовые автомобили

Участок №3

Тип автотранспорта

Количество, шт

всего за 20 минут

За 1 час, N, шт

Общий путь за час, L, км

Легковые автомобили

Грузовые автомобили

Автобусы

Дизельные грузовые автомобили

Участок №4

Тип автотранспорта

Количество, шт

всего за 20 минут

За 1 час, N, шт

Общий путь за час, L, км

Легковые автомобили

2691

Грузовые автомобили

125,7

Автобусы

62,3

Дизельные грузовые автомобили

23,7

*Количество единиц автотранспорта за 1 час (количество, полученное за 20 минут, умноженное на 3).

Б) Проследим динамику количества автомобильного транспорта на выбранных участках в течение недели за единицу времени (1ч).

В течение недели замерялось количество автотранспорта, проезжающих на 4-х исследуемых участках в определенный промежуток времени с 14.00 – 15.00 ч. (рис. 2.1-2.4).

Участок №1. В среднем за неделю на участке №1 проезжает:

644 легковые машины - 86 %;

13 автобусов – 1 %;

70 грузовых автомобилей – 10%;

23 дизельных грузовых автомобилей – 3 %

Рис. 2. 1. Количество автомобильного транспорта на участке дороги №1.

Участок №2. В среднем за неделю на участке №2 проезжает:

65 легковых автомобилей – 86 %; почти не проезжает автобусов – 0%;

8 грузовых автомобилей – 10 %; 3 дизельных грузовых автомобиля – 4 %.

Рис. 2. 2. Количество автомобильного транспорта на участке дороги №2.

Участок №3. В среднем за неделю на участке № 3 проезжает:

41 легковой автомобиль – 91 %; 1 автобус – 2 %;

3 грузовых автомобиля – 7 %; дизельных грузовых автомобилей – 0%

Рис. 2. 3. Количество автомобильного транспорта на участке дороги №3.

Участок №4. В среднем за неделю на участке №4 проезжает:

2552 легковых автомобиля – 80 %; 182 автобуса – 6,5 %;

357 грузовых автомобилей – 11 %; 70 дизельных груз. автомобилей – 2,5%.

Рис. 2. 4. Количество автомобильного транспорта на участке дороги №4.

На выбранных участках наибольшее количество транспорта относится к легковым автомобилям 80-90%, 7-11 % приходится на долю – грузовых автомобилей и лишь незначительная часть принадлежит автобусам и дизельным грузовым автомобилям (рис.3).

Рис. 3. Соотношение автотранспорта на исследуемых участках.

  1. Рассчитаем общий путь, пройденный выявленным количеством автомобилей каждого типа за 1 час (L, км) по формуле:

L i = N i *l,

где N – количество автомобилей каждого типа за 1 час;

i – обозначение каждого типа автотранспорта,

l – длина участка в км

Полученный результат внесен в таблицу 4.

5. Рассчитаем количество топлива (Q 1 , л) разного вида, сжигаемого двигателями автомашин по формуле:

Q i = L i * Y i

L i - путь, пройденный выявленным количеством автомобилей каждого типа за 1 час;

Y 1 - удельный расход топлива из табл. 1.

Было определено общее количество сожженного топлива каждого вида (∑Q). Полученные данные занесены в табл. 4.

таблица 4

Участок №1

Тип автотранспорта

Всего за час, N ср

(шт.)

Общий путь за 1 час, L ср (км)

Q i , в том числе

бензин

дизельное топливо

Легковые автомобили

10,3

Грузовой автомобиль

Автобусы

Дизельные грузовые автомобили

Всего ∑Q

13,1

Участок №2

Тип автотранспорта

Всего за час, N ср

(шт.)

Общий путь за 1 час, L ср (км)

Q i , в том числе

бензин

дизельное топливо

Легковые автомобили

Грузовой автомобиль

Автобусы

Дизельные грузовые автомобили

Всего ∑Q

Участок №3

Тип автотранспорта

Всего за час, N ср

(шт.)

Общий путь за 1 час, L ср (км)

Q i , в том числе

бензин

дизельное топливо

Легковые автомобили

Грузовой автомобиль

Автобусы

0,04

Q i , в том числе

бензин

дизельное топливо

Легковые автомобили

2552

101,4

Грузовой автомобиль

37,4

Автобусы

25,2

Дизельные грузовые автомобили

Всего ∑Q

138,8

32,8

  1. Рассчитали количество выделившихся вредных веществ в литрах при нормальных условиях по каждому виду топлива и всего по табл. 5.

    155,7

    93,42

    15,57

    6,22

    Дизельное топливо

    34,94

    3,49

    1,04

    1,39

    Всего (V), л

    96,91

    16,61

    7,61

    1. Обработка результатов и выводы.

    Рассчитываем

    массу выделившихся вредных веществ (m, г) по формуле:

    m= V*M/22,4;

    количество чистого воздуха, необходимое для разбавления выделившихся вредных веществ для обеспечения санитарно-необходимых условий окружающей среды (м 3 ) по формуле:

    V возд = m в /ПДК в

    Полученные результаты заносим в таблицу 6.

    таблица 6

    Вид вредного вещества

    Количество, л

    Масса, г

    Количество воздуха для разбавления, м 3

    Значение ПДК, мг/м 3

    Угарный газ (CO)

    96,91

    120,76

    40233

    Углеводороды

    16,61

    53,38

    2135,5

    Диоксид азота (NO 2 )

    7,61

    15,62

    390500

    0,04

    Выводы:

    Автотранспорт является одним из основных загрязнителей атмосферы оксидам азота и угарным газом, содержащихся в выхлопных газах. Количество автотранспорта растет из года в год, что непременно приводит к загрязнению окружающего воздуха.

    К основным проблемам автотранспортного загрязнения в Нижнем Новгороде относят повышение количества автотранспорта на душу населения, не соблюдение правил техобслуживания автомашин, проблема парковок, неразвитость объездных дорог, качество самих дорог.

    Полученные в результате исследования результаты позволяют сделать следующие выводы:

    1. автотранспортом наиболее загружены дороги, прилегающие к лицею на участках №1, №4,
    2. количество легковых автомобилей на дорогах в окрестностях МОУ лицей №28 существенно превышает количество автобусов и грузовых машин;
    3. при движении автотранспорта по выбранным участкам дороги большую часть газообразных выбросов (по массе) составляет угарный газ (CO); это свидетельствует о том, что жителям данной улицы угрожает хроническое отравление этим веществом;
    4. масса выбросов углеводородов и диоксида азота значительно меньше, но также может влиять на состояние здоровья человека.
    5. Количество вредных веществ, выбрасываемых в атмосферу жилого района работающими автомобильными двигателями, велико, а воздуха для их разбавления до безопасной концентрации явно не достаточно.

    Выдвинутая гипотеза подтвердилась: математические методы учета позволяют определить массу вредных выбросов автомобильного транспорта, попадающих в атмосферу.

    Список литературы

    1. И.Р. Голубев, Ю.В. Новиков. Окружающая среда и транспорт. Москва «Транспорт», 1987
    2. Природопользование. Учебник под ред. проф. Э.А. Арустамова. 2-ое изд., перераб. и доп.-М.:Издат.дом «Дашков и К», 2000.-284с.
    3. Пивоваров, Ю.П., Королик, В.В., Зиневич, Л.С. Гигиена и основы экологии человека. Серия «Учебник и учебные пособия» Ростов н/Д.: «Феникс», 2002. -512с.
    4. Алексеев С.В, Груздева Н.В, Муравьёв А.Г, Гущина Э.В. Практикум по экологии: Учебное пособие / по ред. С.В. Алексеева. – М. : АО МДС, 1996 – 192 с.
    5. Энциклопедия для детей. Т 19. Экология/ глав. ред. В. Володин; вед. Науч. Ред. Г. Вильчек. – М.: Аванта, 2004 – 448 с.
    6. http://www.ecologystudy.ru

Вследствие загрязнения среды обитания вредными веществами отработавших газов двигателей внутреннего сгорания зоной экологического бедствия для населения становятся целые регионы, в особенности крупные города. Проблема дальнейшего снижения вредных выбросов двигателей все более обостряется ввиду непрерывного увеличения парка эксплуатируемых автотранспортных средств, уплотнения автотранспортных потоков, нестабильности показателей самих мероприятий по снижению вредных веществ в процессе эксплуатации. В денежном исчислении величина ежегодного экологического ущерба (загрязнение атмосферы, шум, воздействие на климат) от функционирования автотранспортного комплекса Российской Федерации достигает 2-3 % валового национального продукта при общих экологических потерях 10 % и затратах на природоохранные мероприятия не более 1 %. Основная доля ущерба от автотранспорта (78 %) связана с загрязнением атмосферного воздуха выбросами вредных веществ (что во многом объясняется низким качеством отечественных топлив в сравнении с европейскими стандартами), 16 % ущерба приходится на последствия шумового воздействия транспорта на население.

Общее количество загрязняющих веществ, поступивших в атмосферный воздух на территории Российской Федерации от выхлопов газа автомобильного транспорта, в 2000 г. составило 11 824,2 тыс. т.

Принцип работы автомобильных двигателей основан на превращении химической энергии жидких и газообразных топлив нефтяного происхождения в тепловую, а затем – в механическую энергию. Жидкие топлива в основном состоят из углеводородов, газообразные, наряду с углеводородами, содержат негорючие газы, такие как азот и углекислый газ. При сгорании топлива в цилиндрах двигателей образуются нетоксичные (водяной пар, углекислый газ) и токсичные вещества. Последние являются продуктами сгорания или побочных реакций, протекающих при высоких температурах. К ним относятся окись углерода СО, углеводороды C m H n , окислы азота (NO и NO 2) обычно обозначаемые NO X . Кроме перечисленных веществ вредное воздействие на организм человека оказывают выделяемые при работе двигателей соединения свинца, канцерогенные вещества, сажа и альдегиды. В таблице 1 приведено содержание основных токсичных веществ в отработавших газах бензиновых двигателей.

Таблица 1.

Основным токсичным компонентом отработавших газов, выделяющихся при работе бензиновых двигателей, является окись углерода. Она образуется при неполном окислении углерода топлива из-за недостатка кислорода во всем объеме цилиндра двигателя или в отдельных его частях.

Основным источником токсичных веществ, выделяющихся при работе дизелей, являются отработавшие газы. Картерные газы дизеля содержат значительно меньшее количество углеводородов по сравнению с бензиновым двигателем в связи с тем, что в дизеле сжимается чистый воздух, а прорвавшиеся в процессе расширения газы содержат небольшое количество углеводородных соединений, являющихся источником загрязнений атмосферы.

Таблица 2.

Загрязнение воздуха автомобильным транспортом происходит в результате сжигания топлива. Химический состав выбросов зависит от вида и качества топлива, технологии производства, способа сжигания в двигателе и его технического состояния.

Наиболее неблагоприятными режимами работы являются малые скорости и «холостой ход» двигателя, когда в атмосферу выбрасываются загрязняющие вещества в количествах, значительно превышающих выброс на нагрузочных режимах. Техническое состояние двигателя непосредственно влияет на экологические показатели выбросов. Отработавшие газы бензинового двигателя с неправильно отрегулированными зажиганием и карбюратором содержат оксид углерода в количестве, превышающем норму в 2-3 раза.

Отработавшие газы двигателя внутреннего сгорания содержат около 200 компонентов. Период их существования длится от нескольких минут до 4-5 лет. По химическому составу и свойствам, а также характеру воздействия на организм человека их объединяют в группы.

Первая группа. В нее входят нетоксичные вещества: азот, кислород, водород, водяной пар, углекислый газ и другие естественные компоненты атмосферного воздуха. В этой группе заслуживает внимания углекислый газ (СО 2), содержание которого в отработавших газах в настоящее время не нормируется, однако вопрос об этом ставится в связи с особой ролью СО 2 в «парниковом эффекте».

Вторая группа. К этой группе относят только одно вещество – оксид углерода, или угарный газ (СО). Продукт неполного сгорания нефтяных видов топлива, он не имеет цвета и запаха, легче воздуха. В кислороде и на воздухе оксид углерода горит голубоватым пламенем, выделяя много теплоты и превращаясь в углекислый газ. Оксид углерода обладает выраженным отравляющим действием. Оно обусловлено его способностью вступать в реакцию с гемоглобином крови, приводя к образованию карбоксигемоглобина, который не связывает кислород. Вследствие этого нарушается газообмен в организме, появляется кислородное голодание и нарушается функционирование всех систем организма. Отравлению угарным газом часто подвержены водители автотранспортных средств при ночевках в кабине с работающим двигателем или при прогреве двигателя в закрытом гараже.

Третья группа. В ее составе оксиды азота, главным образом, NO – оксид азота и NO 2 – диоксид азота. Это газы, образующиеся в камере сгорания двигателя при температуре 2800°С и давлении около 1 МПа. Оксид азота – бесцветный газ, не взаимодействует с водой и мало растворим в ней, не вступает в реакции с растворами кислот и щелочей. Легко окисляется кислородом воздуха и образует диоксид азота. При обычных атмосферных условиях NO полностью превращается в NO 2 – газ бурого цвета с характерным запахом. Он тяжелее воздуха, поэтому собирается в углублениях, канавах и представляет большую опасность при техническом обслуживании транспортных средств.

Четвертая группа. В эту наиболее многочисленную по составу группу входят различные углеводороды, то есть соединения типа С Х Н У – этан, метан, бензол, ацетилен и др. токсичные вещества. В отработавших газах содержатся углеводороды различных гомологических рядов: парафиновые (алканы), нафтеновые (цикланы) и ароматические (бензольные), всего около 160 компонентов. Они образуются в результате неполного сгорания топлива в двигателе.

Несгоревшие углеводороды являются одной из причин появления белого или голубого дыма. Это происходит при запаздывании воспламенения рабочей смеси в двигателе или при пониженных температурах в камере сгорания.

Углеводороды под действием ультрафиолетового излучения Солнца вступают в реакцию с оксидами азота, в результате образуются новые токсичные продукты – фотооксиданты, являющиеся основой «смога» (от англ, smoke – дым и fog – туман).

Главным токсичным компонентом смога является озон. К фотооксидантам также относятся угарный газ, соединения азота, перекиси и др. Фотооксиданты биологически активны, оказывают вредное воздействие на живые организмы, ведут к росту легочных и бронхиальных заболеваний людей, разрушают резиновые изделия, ускоряют коррозию металлов, ухудшают условия видимости.

Пятая группа. Ее составляют альдегиды – органические соединения, содержащие альдегидную группу С, связанную с углеводородным радикалом (СН 3 , С 6 Н 5 или др.).

В отработавших газах присутствуют в основном формальдегид, акролеин и уксусный альдегид. Наибольшее количество альдегидов образуется на режимах холостого хода и малых нагрузок, когда температуры сгорания в двигателе невысокие.

Формальдегид НСНО – бесцветный газ с неприятным запахом, тяжелее воздуха, легко растворимый в воде. Он раздражает слизистые оболочки человека, дыхательные пути, поражает центральную нервную систему. Обусловливает запах отработавших газов, особенно у дизелей.

Акролеин СН 2 =СН-СН=О, или альдегид акриловой кислоты, – бесцветный ядовитый газ с запахом подгоревших жиров. Оказывает воздействие на слизистые оболочки.

Уксусный альдегид СН 3 СНО – газ с резким запахом и токсичным действием на человеческий организм.

Шестая группа. В нее входят взвешенные твердые вещества (сажа и другие дисперсные частицы (продукты износа двигателей, аэрозоли, масла, нагар и др.)), которые состоят из мелкодисперсных частиц (диаметром менее 1 мкм), способные находиться во взвешенном состоянии в течение суток. Они состоят из разных материалов, включая неорганическую золу, кислые сульфаты или нитраты, дым, содержащий полициклические ароматические углеводороды, тонкодисперсную пыль, остатки свинца и асбеста.

Проблема загрязнения воздуха городов мира взвешенными частицами диаметром менее 10 мкм, называемые обычно РМ-10, признана одной из важнейших.

В России внимание этой проблеме начинает уделяться только сейчас. На сети мониторинга загрязнения атмосферы в России измеряются концентрации лишь суммы взвешенных веществ. Для развития сети станций, измеряющих концентрации мелкодисперсных взвешенных частиц диаметром менее 10 мкм недостаточно финансовых ресурсов.

Полициклические ароматические углеводороды относятся к большому числу органических соединений, химическая структура которых состоит из двух и более бензольных колец. Наиболее широко известное соединение – бенз(а)пирен.

Сажа – частицы твердого углерода черного цвета, образующиеся при неполном сгорании и термическом разложении углеводородов топлива. Она не представляет непосредственной опасности для здоровья человека, но может раздражать дыхательные пути. Создавая дымный шлейф за транспортным средством, сажа ухудшает видимость на дорогах. Наибольший вред сажи проявляется в адсорбировании на ее поверхности бенз(а)пирена, который в этом случае оказывает более сильное негативное воздействие на организм человека, чем в чистом виде. Поэтому уменьшение ее выбросов – весьма актуальная задача, от решения которой зависят как экологические показатели воздушного бассейна, так и развитие дизельного транспорта в целом. В настоящее время для очистки отработавших газов дизелей от сажевых (твердых) частиц во многих странах находят применение сажевые фильтры.

По данным работы, диаметр первичных сажевых частиц составляет 0,02-0,17 мкм. В отработавших газах сажа находится в виде образований неправильной формы размером 0,3-100 мкм. Наибольшее количество частиц сажи имеет размеры до 0,5 мкм.

Седьмая группа. Представляет собой сернистые соединения – такие неорганические газы, как сернистый ангидрид, сероводород, которые появляются в составе отработавших газов двигателей, если используется топливо с повышенным содержанием серы. Значительно больше серы присутствует в дизельных топливах по сравнению с другими видами топлив, используемых на транспорте.

Для отечественных месторождений нефти (особенно в восточных районах) характерен высокий процент присутствия серы и сернистых соединений. Поэтому и получаемое из нее дизельное топливо по устаревшим технологиям отличается более тяжелым фракционным составом и вместе с тем хуже очищено от сернистых и парафиновых соединений. Согласно европейским стандартам, введенным в действие в 1996 г., содержание серы в дизельном топливе не должно превышать 0,005 г/л, а по российскому стандарту – 1,7 г/л. Наличие серы усиливает токсичность отработавших газов дизелей и является причиной появления в них вредных сернистых соединений. Сернистые соединения обладают резким запахом, тяжелее воздуха, растворяются в воде. Они оказывают раздражающее действие на слизистые оболочки горла, носа, глаз человека, могут привести к нарушению углеводного и белкового обмена и угнетению окислительных процессов, при высокой концентрации (свыше 0,01 %) – к отравлению организма.

Восьмая группа. Компоненты этой группы – свинец и его соединения – встречаются в отработавших газах карбюраторных автомобилей только при использовании этилированного бензина, имеющего в своем составе присадку, повышающую октановое число. Оно определяет способность двигателя работать без детонации. Чем выше октановое число, тем более стоек бензин против детонации. Детонационное сгорание рабочей смеси протекает со сверхзвуковой скоростью, что в 100 раз быстрее нормального. Работа двигателя с детонацией опасна тем, что двигатель перегревается, мощность его падает, а срок службы резко сокращается. Увеличение октанового числа бензина способствует снижению возможности наступления детонации. В качестве присадки, повышающей октановое число, используют антидетонатор – этиловую жидкость Р-9. Бензин с добавлением этиловой жидкости становится этилированным. В состав этиловой жидкости входят собственно антидетонатор – тетраэтилсвинец РЬ(С 2 Н 5)4, выноситель – бромистый этил (ВгС 2 Н 5) и амонохлорнафталин, наполнитель – бензин Б-70, антиокислитель – параоксидифениламин и краситель. При сгорании этилированного бензина выноситель способствует удалению свинца и его оксидов из камеры сгорания, превращая их в парообразное состояние. Они вместе с отработавшими газами выбрасываются в окружающее пространство и оседают вблизи дорог.

В придорожном пространстве примерно 50 % выбросов свинца в виде микрочастиц сразу распределяются на прилегающей поверхности. Остальное количество в течение нескольких часов находится в воздухе в виде аэрозолей, а затем также осаждается на землю вблизи дорог. Накопление свинца в придорожной полосе приводит к загрязнению экосистем и делает близлежащие почвы непригодными к сельскохозяйственному использованию. Добавление к бензину присадки Р-9 делает его высокотоксичным. Разные марки бензина имеют различное процентное содержание присадки. Чтобы различать марки этилированного бензина, их окрашивают, добавляя в присадку разноцветные красители. Неэтилированный бензин поставляется без окрашивания (табл. 3).

Таблица 3.

Некоторые показатели физико-химических свойств автомобильных бензинов по ГОСТ 2084 – 77 и ОСТ 38.01.9 – 75

Показатели качества

Октановое число, не менее:

По моторному методу

По исследовательскому методу

Содержание (масса) свинца, г/кг бензина, не более
Содержание (массовая доля) серы, %, не более
Цвет этилированного бензина

Оранжевый

В развитых странах мира применение этилированного бензина ограничивается или уже полностью прекращено не только по причине высокой токсичности присадки Р-9, но и из-за его несовместимости с каталитическими нейтрализаторами отработавших газов. Достаточно одной заправки этилированным бензином, чтобы вывести из строя активный слой дорогостоящего нейтрализатора и датчика свободного кислорода (Х-зонда), т.е. лишить автомобиль инструментов подавления СО, СН, NO X и стехиометрического дозирования топлива с последующими непредсказуемыми последствиями, вплоть до возгорания автомобиля.

Негативное воздействие на экосистемы оказывают не только рассмотренные компоненты отработавших газов двигателей, выделенные в восемь групп, но и сами углеводородные топлива, масла и смазки. Обладая большой способностью к испарению, особенно при повышении температуры, пары топлив и масел распространяются в воздухе и отрицательно влияют на атмосферный воздух.



На балансе практически любого юридического лица или индивидуального предпринимателя, независимо от осуществляемого ими вида экономической деятельности, имеется автотранспорт. При этом в соответствии с п. 1 ст. 17, п. 2 ст. 30 Федерального закона от 04.05.1999 № 96-ФЗ «Об охране атмосферного воздуха» (в ред. от 23.07.2013; далее - Федеральный закон № 96-ФЗ), ст. 45 Федерального закона от 10.01.2002 № 7-ФЗ «Об охране окружающей среды» (в ред. от 28.12.2013) запрещается производство и эксплуатация транспортных и иных передвижных средств, содержание вредных (загрязняющих) веществ в выбросах которых превышает установленные технические нормативы выбросов. Но что является в данном случае выбросом вредных загрязняющих веществ, каковы их нормативные значения и, главное, кем и когда они должны контролироваться? Именно на эти вопросы и ряд других сопутствующих вопросов мы постараемся дать ответы в нашей статье.

Прежде всего, необходимо отметить, что нормативные требования к содержанию выбросов вредных (загрязняющих) веществ в отработавших газах от автотранспорта (далее - выбросы) содержатся в п. 4.1 Требований к выпускаемым в обращение единичным транспортным средствам (Приложение № 5 к техническому регламенту о безопасности колесных транспортных средств, утвержденному Постановлением Правительства РФ от 10.09.2009 № 720; в ред. от 22.12.2012, с изм. от 15.07.2013).

К СВЕДЕНИЮ

1 января 2015 г. должен вступить в силу новый технический регламент Таможенного союза «О безопасности колесных транспортных средств», утвержденный Решением Комиссии Таможенного союза от 09.12.2011 № 87 (в ред. от 30.01.2013).

В соответствии с упомянутым п. 4.1 транспортные средства должны соответствовать требованиям специального технического регламента «О требованиях к выбросам автомобильной техники, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ», утвержденного Постановлением Правительства РФ от 12.10.2005 № 609 (в ред. от 20.01.2012) (далее - Технический регламент).

Именно в п. 3 Технического регламента содержится определение понятия «выбросы»: выбросы - это выбросы вредных (загрязняющих) веществ, которыми являются отработанные газы двигателей внутреннего сгорания и испарения топлива автомобильной техники, содержащие вредные (загрязняющие) вещества (оксид углерода (СО ), углеводороды С m Н n , оксиды азота (NO x ) и дисперсные частицы). В зависимости от уровня выбросов автомобильной технике и двигателю внутреннего сгорания присваивается соответствующий экологический класс - классификационный код. При этом согласно п. 14 Технического регламента введение в действие технических нормативов выбросов в отношении автомобильной техники, выпускаемой в обращении на территории Российской Федерации, и двигателей внутреннего сгорания осуществляется в следующие сроки:

  • экологического класса 2 - с 21.04.2006 (т.е. с даты вступления в силу Технического регламента);
  • экологического класса 3 - с 01.01.2008;
  • экологического класса 4 - с 01.01.2010;
  • экологического класса 5 - с 01.01.2014.

Кроме того, нормы и методы контроля выбросов содержатся в ряде национальных стандартов Российской Федерации. Рассмотрим подробнее некоторые из них.

1. ГОСТ Р 52033-2003 «Автомобили с бензиновыми двигателями. Выбросы загрязняющих веществ с отработавшими газами. Нормы и методы контроля при оценке технического состояния» (далее - ГОСТ Р 52033-2003).

ГОСТ распространяется на находящиеся в эксплуатации автотранспортные средства (далее - автомобили) с бензиновыми двигателями категорий М 1 , М 2 , М 3 , N 1 , N 2 , N 3 , оснащенные или не оснащенные системами нейтрализации отработавших газов (исключение составляют автомобили, чья полная масса составляет менее 400 кг или максимальная скорость не превышает 50 км/ч).

Стандарт устанавливает нормативные значения содержания в отработавших газах автомобилей оксида углерода и углеводородов, нормативное значение коэффициента избытка воздуха и методы контроля при оценке технического состояния систем автомобиля и двигателя.

Проверки автомобилей на соответствие требованиям данного стандарта могут проводиться в следующих случаях:

  • на предприятиях, изготавливающих двигатели и автомобили, при приемочных, периодических и контрольных испытаниях серийной продукции;
  • при сертификационных испытаниях;
  • при контроле технического состояния находящихся в эксплуатации автомобилей в установленном порядке специально уполномоченными органами;
  • на предприятиях, эксплуатирующих и обслуживающих автомобили, при техническом обслуживании, ремонте и регулировке агрегатов, узлов и систем, влияющих на изменение содержания нормируемых компонентов в отработавших газах;
  • на предприятиях, осуществляющих капитальный ремонт автомобилей.

Кроме того, в Изменении № 1 от 01.07.2012 к стандарту содержится рекомендуемая форма журнала записи результатов проверок автомобилей на содержание оксида углерода и углеводородов в отработавших газах и состав рабочей смеси двигателя (см. Пример).

2. ГОСТ Р 52160-2003 «Автотранспортные средства, оснащенные двигателями с воспламенением от сжатия. Дымность отработавших газов. Нормы и методы контроля при оценке технического состояния».

ГОСТ устанавливает нормы и методы измерения видимых загрязняющих веществ отработавших газов (дымности) в режиме свободного ускорения для автомобилей категорий М 1 , М 2 , М 3 , N 1 , N 2 , N 3 , находящихся в эксплуатации, которые оснащены двигателями с воспламенением от сжатия.

3. ГОСТ Р 41.24-2003 «Единообразные предписания, касающиеся: I. Сертификации двигателей с воспламенением от сжатия в отношении дымности; II. Сертификации автотранспортных средств в отношении установки на них двигателей с воспламенением от сжатия, сертифицированных по типу конструкции; III. Сертификации автотранспортных средств с двигателями с воспламенением от сжатия в отношении дымности; IV. Измерения мощности двигателей» (далее - ГОСТ Р 41.24-2003).

Стандарт устанавливает следующие требования:

  • часть I - к выбросу видимых загрязняющих веществ двигателями с воспламенением от сжатия (далее - дизели), предназначенными для установки на автотранспортных средствах;
  • часть II - к установке на автотранспортных средствах дизелей, сертифицированных по типу конструкции в соответствии с ч. I данного стандарта;
  • часть III - к выбросу видимых загрязняющих веществ автотранспортными средствами, дизели которых не имеют отдельного сертификата по типу конструкции в соответствии с ч. I данного стандарта.

4. ГОСТ Р 54942-2012 «Газобаллонные автомобили с искровыми двигателями. Выбросы вредных (загрязняющих) веществ с отработавшими газами. Нормы и методы контроля при оценке технического состояния» (далее - ГОСТ Р 54942-2012).

ГОСТ распространяется на находящиеся в эксплуатации на территории Российской Федерации транспортные средства категорий M и N с искровыми двигателями:

  • монотопливные, работающие на сжиженном нефтяном газе (СНГ), компримированном природном газе (КПГ) или сжиженном природном газе (СПГ);
  • многотопливные, работающие на СНГ, КПГ или СПГ, а также допускающие работу на бензине.

Стандарт устанавливает нормативные значения содержания загрязняющих веществ в отработавших газах автомобилей (оксида углерода и углеводородов), коэффициента избытка воздуха, требования к техническому состоянию систем двигателя, а также методы контроля при оценке технического состояния.

Необходимо отметить, что начиная с 30.06.2003, т.е. с даты вступления в силу Федерального закона от 27.12.2002 № 184-ФЗ «О техническом регулировании», национальные стандарты носят рекомендательный характер и применяются на добровольной основе, а в соответствии с п. 4 ст. 17 Федерального закона № 96-ФЗ транспортные и иные передвижные средства, выбросы которых оказывают вредное воздействие на атмосферный воздух, подлежат регулярной проверке на соответствие таких выбросов техническим нормативам выбросов в порядке, определенном уполномоченным Правительством Российской Федерации федеральным органом исполнительной власти.

Для реализации данного пункта Правительством Российской Федерации было принято соответствующее Постановление от 06.02.2002 № 83 «О проведении регулярных проверок транспортных и иных передвижных средств на соответствие техническим нормативам выбросов вредных (загрязняющих) веществ в атмосферный воздух», которое действует и в настоящее время, правда, в редакции от 05.12.2011. В частности, согласно подп. «а» п. 2 данного Постановления проверки автотранспортных средств должны осуществляться во время их государственного технического осмотра .

Так, например, в соответствии с п. 32 Приложения № 1 к Правилам проведения технического осмотра транспортных средств, утвержденным Постановлением Правительства РФ от 05.12.2011 № 1008 (в ред. от 13.11.2013), при проведении технического осмотра к двигателю и его системе предъявляется требование о том, что содержание загрязняющих веществ в отработавших газах транспортных средств должно соответствовать следующим требованиям:

  • для транспортных средств с бензиновыми двигателями - ГОСТ Р 52033-2003;
  • для газобаллонных транспортных средств - ГОСТ Р 17.2.2.06-99 «Охрана природы. Атмосфера. Нормы и методы измерения содержания оксида углерода и углеводородов в отработавших газах газобаллонных автомобилей» (заменен на ГОСТ Р 54942-2012 );
  • для транспортных средств с дизелями уровень дымности отработавших газов в режиме свободного ускорения не должен превышать значение коэффициента поглощения света, указанного в документах, удостоверяющих соответствие транспортного средства Правилам ЕЭК ООН № 24-03 (соответствуют ГОСТ Р 41.24-2003 ), или на знаке официального утверждения, нанесенном на двигатель или транспортное средство, или установленных изготовителем, а при отсутствии выше указанных сведений не должен превышать 2,5 м –1 - для двигателей без наддува, 3 м –1 - для двигателей с наддувом.

Итоги технического осмотра фиксируются в диагностической карте.

Таким образом, можно сделать вывод о том, что у природопользователя нет обязанности по осуществлению самостоятельного или с привлечением специализированной аккредитованной лаборатории экологического контроля за содержанием выбросов автотранспорта . На законодательном уровне его проведение предусмотрено во время осуществления технического осмотра транспортных средств. Данный вывод подтверждается рядом примеров из судебной практики (например, Решением Липецкого областного суда от 14.09.2011 по делу № 21-67-2011, Постановлением Одиннадцатого арбитражного апелляционного суда от 23.01.2008 № 11АП-7965/2007 и др.).

Однако стоит учитывать, что в случае обнаружения при осуществлении государственного экологического контроля в отношении природопользователя превышения указанных нормативов у выпущенного на линию автотранспорта на должностное лицо, ответственное за выпуск, могут быть наложены штрафные санкции в соответствии со ст. 8.22 Кодекса Российской Федерации об административных правонарушениях:

Извлечение
из Кодекса Российской Федерации
об административных правонарушениях

Статья 8.22. Выпуск в эксплуатацию механических транспортных средств с превышением нормативов содержания загрязняющих веществ в выбросах либо нормативов уровня шума

Допуск к полету воздушного судна, выпуск в плавание морского судна, судна внутреннего водного плавания или маломерного судна либо выпуск в рейс автомобиля или другого механического транспортного средства, у которых содержание загрязняющих веществ в выбросах либо уровень шума, производимого ими при работе, превышает нормативы, установленные государственными стандартами Российской Федерации, влечет наложение административного штрафа на должностных лиц в размере от пятисот до одной тысячи рублей.

В случае если природопользователь, с учетом своих финансовых возможностей, все же решит включить в программу экологического контроля мероприятия по контролю за выбросами загрязняющих веществ автотранспортом, для выбора количества транспортных средств (далее - ТС), подвергаемых контролю, рекомендуем ему воспользоваться нормативами (раздельно по видам топлива), указанными в п. 2.7 приложения 1 к Инструктивно-методическим указаниям по взиманию платы за загрязнение окружающей природной среды, утвержденным Минприроды России от 26.01.1993 (в ред. от 15.02.2000, с изм. от 12.07.2011):

  • 100 % - для предприятий с числом ТС до 20 единиц;
  • 50 % - для предприятий с числом ТС до 50 единиц;
  • 30 % - для предприятий с числом ТС до 100 единиц;
  • 20 % - для предприятий с числом ТС до 500 единиц;
  • 10 % - для предприятий с числом ТС свыше 500 единиц.

О.Н. Лаврухина, специалист по экологии и охране труда