Расчет выбросов вредных веществ от автотранспорта. Расчет выбросов вредных веществ автомобильным транспортом - файл n1.doc Выбросы вредных веществ от автотранспорта содержат

  • Методики расчета выбросов загрязняющих веществ в атмосферный воздух при проведении различных технологических процессов (Документ)
  • Охрана окружающей среды (Документ)
  • Буренин Н.С., Волкодаева М.В., Губанов А.Ф. и др. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Документ)
  • Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования для предприятий радиоэлектронного комплекс (Документ)
  • Тищенко Н.Ф. Охрана атмосферного воздуха. Расчет содержания вредных веществ и их распределение в воздухе (Документ)
  • Расчет выбросов вредных веществ в атмосферу и разработка ПДВ в вагонном депо Ростов (Документ)
  • Загрязнения автомобильным транспортом (Документ)
  • n1.doc

    Федеральное агентство железнодорожного транспорта

    Уральский государственный университет

    Путей сообщения

    Кафедра ИЗОС

    Практическая работа

    По экологии


    Екатеринбург

    В условиях интенсивной антропогенной нагрузки экологическая безо­пасность окружающей среды представляется актуальнейшей проблемой, весьма далёкой от разрешения. Всё отчётливее проявляются последствия ур­банизации, о чём указывается в Экологической доктрине Российской Феде­рации. Существенной особенностью загрязнения воздушной среды городов являются выхлопные газы автотранспорта. В ряде городов России, особенно в крупных административных и промышленных центрах, выхлопные газы автомобильного транспорта составляют 60-80% общих выбросов.

    Автомобильные двигатели загрязняют атмосферу вредными вещества­ми, которые представляют собой сложную смесь из более чем двухсот ком­понентов, среди которых немало канцерогенных. Основные виды выбросов загрязняющих веществ от мобильных источников приведены в табл 1.
    Таблица 1-Основные виды выбросов загрязняющих веществ от мобильных источников


    Тип двигателя

    Топливо

    Основные виды загрязнений

    Примеры

    Четырёхтактный двигатель внутреннего сгора­ния

    Бензин

    Углеводороды, оксид углерода, оксиды азо­та, свинец

    Автомобили, автобусы, само­лёты, мотоцик­лы

    Двухтактный дви­гатель внутреннего сгорания

    Бензин
    (с добавлени­ем масла)

    Углеводороды, оксид углерода, оксид азота, твёрдые вещества (са­жа)

    Мотоциклы, вспомогатель­ные моторы

    Дизель

    Лигроин

    Оксиды азота, твёрдые вещества (сажа)

    Автобусы, трак­торы, поезда

    По своему воздействию на организм человека вещества, содержащиеся в отработанных газах, подразделяются на несколько групп.

    В группу нетоксичных веществ входят азот, кислород, водяной пар, а также углекислый газ.

    Группу токсичных веществ составляют окись углерода СО, оксиды азота, многочисленная группа углеводородов, включающая парафины, аро­матические соединения и т.д. Окись углерода поражает нервную систему че­ловека, нарушает сердечную деятельность, препятствует кислородному об­мену в крови. Углеводороды способствуют развитию раковых заболеваний.

    Следующую группу образуют неорганические газы - оксиды серы и сероводород и сажа. Например, длительное воздействие сажи может прово­цировать болезни органов дыхания, центральной нервной и иммунной сис­тем.

    Особую группу составляют полициклические ароматические углеводо­роды (ПАУ), в том числе активный - бенз(а)пирен, являющийся сильным канцерогеном. Именно с бенз(а)пиреном связывают дополнительный риск возникновения онкологических заболеваний.

    В случае присутствия этилированного бензина образуются токсичные соединения свинца. Свинец поражает нервную систему человека и костную ткань.

    Состав отработанных газов основных типов двигателей - бензинового двигателя с электрическим зажиганием и дизеля - существенно отличается, прежде всего по концентрации продуктов неполного сгорания, а именно ок­сида углерода, углеводородов и сажи. В табл 2 показаны выбросы вред­ных веществ карбюраторного и дизельного двигателей (% к общему объёму выбросов).

    Таблица 2-Выбросы вредных веществ карбюраторного и дизельного двигателей


    Вещество

    Карбюраторный двигатель

    Дизельный двигатель

    Оксид углерода

    0,5-12,0

    0,01-0,5

    Оксид азота

    0,005-0,8

    0,002-0,5

    Углеводороды

    0,2-0,3

    0,009-0,5

    Бенз(а)пирен

    До 20 мкг/куб. м

    До 10 мкг/куб.м

    Как видно из таблицы выбросы основных загрязняющих веществ зна­чительно ниже в дизельных двигателях. Поэтому принято считать их более экологически чистыми. Наиболее полно положительные качества дизеля проявляются в режиме городского движения с большим процентом малых нагрузок и холостого хода. Однако дизельные двигатели отличаются повы­шенными выбросами сажи, которая насыщена канцерогенными углеводоро­дами и микроэлементами.

    Наиболее объёмным компонентом автомобильных выбросов является оксид углерода, на него приходится до 80% выбросов от легковых автомоби­лей и до 87% выбросов от грузового транспорта. Ко вторым по массе загряз­нителям атмосферы от автотранспорта относятся углеводороды (14% от лег­кового и до 8% от грузового транспорта). Оксидами азота в большей степени насыщены выхлопы автобусов и легкового транспорта (до 8%). Оксид угле­рода, оксиды азота и углеводороды, как обладающие наибольшей токсично­стью, являются основными нормирующими компонентами выхлопных газов автомобилей.

    Наибольшее количество токсичных веществ выбрасывается автомоби­лями в воздух на малом ходу, на перекрёстках, остановках перед светофора­ми.
    В табл 3 приведены значения концентрации основных примесей кар­бюраторного двигателя при различных режимах его работы.
    Таблица 3 - Концентрации основных примесей карбюраторного двигателя при различных режимах его работы


    Режим работы двигателя

    Оксид угле­рода, % по объёму

    Углеводороды,

    Мг/л


    Оксиды азо­та,

    Мг/л


    Холостой ход

    4-12

    2-6

    -

    Принудительный холостой ход

    2-4

    8-12

    -

    Средние нагрузки

    0-1

    0,8-1,5

    2,5-4,0

    Полные нагрузки

    2

    0,7-0,8

    4-8

    Подсчитано, что среднегодовой пробег каждого автомобиля 15 тысяч километров. В среднем за это время он обедняет атмосферу на 4350 кг кисло­рода и обогащает её на 3250 кг углекислого газа, 530 кг окиси углерода, 93 кг углеводородов и 7 кг окислов азота.

    Количество выбросов вредных веществ, поступающих от автотранс­порта, может быть оценено расчётным методом. Исходными данными для расчётов количества выбросов являются:

    Количество единиц автотранспорта разных типов, проезжающих по выделенному участку автотрассы за единицу времени. В соот­ветствии с методикой автомобильный транспорт необходимо разделить на пять категорий: автобусы, легковые автомобили,
    лёгкие, средние и тяжёлые грузовые автомобили.

    Нормы расхода топлива автотранспортом при движении в усло­виях города (средние нормы расхода топлива приведены в табл 4).

    Таблица 4 - Средние нормы расхода топлива автотранспортом при движении в условиях города


    Тип автотранспорта

    Средние нормы расхода топлива (л на 100 км)

    Удельный расход топлива
    Уi (л на 1 км)

    Легковой автомобиль

    11-13

    0,11-0,13

    Грузовой автомобиль

    29-33

    0,29-0,33

    Автобус

    41-44

    0,41-0,44

    Дизельный грузовой автомобиль

    31-34

    0,31-0,34

    Значения эмпирического коэффициента, определяющего выброс вредных веществ от автотранспорта в зависимости от вида горючего, приве­дены в таблице 5. Коэффициент К численно равен количеству выбросов со­ответствующего компонента в литрах при сгорании в двигателе автомобиля топлива (в литрах) необходимого для проезда 1 км (т.е. равного удельному расходу).
    Таблица 5 - Выброс вредных веществ от автотранспорта в зависимости от вида горючего


    Вид топлива

    Значение коэффициента К

    Оксид углерода

    Углеводороды

    Диоксид азота

    Бензин

    0,6

    0,1

    0,04

    Дизельное топливо

    0,1

    0,03

    0,04

    Практическая работа № 1
    Тема: Определение загруженности улиц автотранспортом и некоторых параметров окружающей среды, усугубляющих загрязнение

    Цель: Данная практическая работа даёт возможность оценить загруженность участка улицы автотранспортом в зависимости от его видов, изучить и срав­нить разные улицы по нагрузке на окружающую среду, обусловленную ви­дами автотранспорта и его интенсивностью. Собранные параметры необхо­димы для расчётов уровней загрязнения воздушной среды.
    Ход работы
    Для более полной и достоверной оценки загруженности улиц авто­транспортом подсчёты автомобилей необходимо производить одним из двух возможных вариантов.

    Вариант: подсчёт автомобилей производится на одной улице, но в течение двух временных отрезков. Например, в утренние часы (с 9 до 10 утра) и в дневные часы (с 17 до 18 часов).

    Вариант: подсчёт автомобилей производится на различных улицах (например, улица в центре города и на окраине или в спальном районе), но в течение одного временного отрезка.

    Наша группа студентов будет работать по первому варианту.
    Обработка результатов:
    Все собранные материалы запишем в таблицы 6 и 7.

    Таблица 6 - Характеристика улицы

    Таблица 7.1 - Интенсивность движения автомобилей на улице Черепанова, от улицы Готвальда до улицы Машинистов с 12:2 до 12:40


    Тип автомобиля

    Количество автомобилей



    5 минут

    5 минут

    5 минут

    Легкий грузовой

    7

    5

    8

    6,7

    80

    Средний грузовой

    2

    1

    0

    1

    12

    Тяжелый грузовой

    1

    0

    0

    1/3

    4

    Легковой

    47

    58

    39

    48

    576

    Автобус

    4

    4

    4

    4

    48

    Общее количество автомобилей

    61

    68

    51

    60

    720

    Таблица 7.2 - Интенсивность движения автомобилей на улице Черепанова, от улицы Готвальда до улицы Машинистов с 18:30 до 18:45


    Тип автомобиля

    Количество автомобилей

    Среднее количество автомобилей за 5 минут

    Количество автомобилей за час

    5 минут

    5 минут

    5 минут

    Легкий грузовой

    8

    0

    5

    7,5

    90

    Средний грузовой

    1

    2

    1

    1,3

    15,6

    Тяжелый грузовой

    0

    0

    0

    0

    0

    Легковой

    63

    71

    59

    64,3

    772

    Автобус

    5

    4

    6

    5

    60

    Общее количество автомобилей

    77

    77

    71

    78,1

    937,6

    Суммарная интенсивность движения автомобилей за сутки. В ходе работы мы нашли среднее количество за два часа утром и вечером. Найдем среднее количество автомобилей за час, и умножим полученное количество автомобилей на 24.

    загруженность улиц автотранспортом согласно ГОСТ Р 52033-2003.
    низкая интенсивность движения -4-9 тысяч автомобилей в сутки;
    средняя -10-19 тысяч
    высокая - 20-32 тысячи.

    Как видно из госта на данном участке дороге высокая интенсивность движения

    Построим диаграммы загруженности улиц автомобильным транспортом
    днем


    вечером

    1- легкий грузовой

    2- средний грузовой

    3- тяжелый грузовой

    4- легковой

    5- автобус
    По таблицам 7.1 и 7.2 видно, что большинство автомобилей – легковые,. Вечером интенсивность движения больше на 23 %. потому что днем практически все автолюбители находились на работе. Вечером они возвращались с работы.

    Общий путь, пройденный каждым видом автотранспорта за 1 час (L, км), по формуле:

    N – количество автомобилей каждого типа за час;

    L - длина участка, км.

    6. Количество топлива:

    Полученные результаты занесем в таблицу 8.
    Таблица 8 - Расход топлива в зависимости от вида автомобилей


    Тип автомобиля

    Количество автомобилей N i

    Q i , в том числе

    Бензин

    Дизельное топливо

    Легковые автомобили

    674

    20,75

    -

    Грузовые автомобили (на бензине)

    98,8

    8,29

    -

    Автобусы

    54

    6,35

    -

    Грузовые дизельные автомобили

    2

    -

    0,18

    Всего?Q

    35,39

    0,18

    7. Рассчитаем по каждому виду топлива количество выделившихся вредных веществ в литрах при нормальных условиях по формуле:

    Значения К возьмем из табл 5.

    Результаты расчетов занесем в итоговую табл 9.

    Таблица 9 - Количество вредных веществ в зависимости от вида топлива


    Вид топлива

    ?Q

    Количество вредных веществ

    СО

    Углеводороды

    NO 2

    Бензин

    35,39

    21,23

    3,54

    1,4

    Дизельное топливо

    0,18

    0,018

    0,005

    0,007

    Всего

    21,25

    3,55

    1,407

    Практическая работа № 2
    Тема: Оценка уровня загрязнения атмосферного воздуха отработанными газа­ми автотранспорта на участке магистральной улицы (по концентрации СО)

    Цель: оценить по концентрации окиси углерода - СО, мг/куб.м.
    Формула оценки концентрации окиси углерода:

    0,5 - фоновое загрязнение атмосферного воздуха нетранспортного происхо­ждения, мг/куб.м;

    N - суммарная интенсивность движения автомобилей на городской дороге, автомобиль/час;

    К t - коэффициент токсичности автомобилей по выбросам в атмосферный воздух окиси углерода;

    К а - коэффициент, учитывающий аэрацию местности;

    К у - коэффициент, учитывающий изменение загрязнения атмосферного воздуха окисью углерода в зависимости от продольного уклона;

    К с - коэффициент, учитывающий изменения концентрации окиси углерода в зависимости от скорости ветра;

    К b - то же в зависимости от относительной влажности воздуха;

    К р - коэффициент увеличения загрязнения воздуха окисью углерода у пере­сечения улиц.

    Коэффициент токсичности автомобилей определяется как средневзвешен­ный для потока автомобилей по формуле:

    Pi - состав движения в долях единиц. Значение К ti определяется по таблице 1

    Таблица 1 - Коэффициент токсичности автомобилей

    Значение коэффициента К а учитывающего аэрацию местности, определяют по таблице 2.
    Таблица 2 - Коэффициент аэрации местности


    Тип местности по степени аэрации

    Коэффициент К а

    Транспортные тоннели

    2,7

    Транспортные галереи

    1,5

    Магистральные улицы и дороги с многоэтажной застройкой с двух сто­рон

    1,0

    Жилые улицы с одноэтажной за­стройкой, улицы и дороги в выемке

    0,6

    Городские улицы и дороги с одно­сторонней застройкой, набережные, эстакады, виадуки, высокие насыпи

    0,4

    Пешеходные тоннели

    0,3

    Городские улицы с низкоэтажной застройкой

    0,8

    Значение коэффициента К у, учитывающего изменение загрязнения воздуха оксидом углерода в зависимости от величины продольного уклона, определяют по табл 3.
    Таблица 3 - Коэффициент, учитывающий загрязнение воздуха окисью углерода в зависимости от продольного уклона улицы

    Продольный уклон (в градусах)

    Коэффициент К у

    0

    1,00

    2

    1,06

    4

    1,07

    6

    1,18

    8

    1,55

    Коэффициент изменения концентрации окиси углерода в зависимости от скорости ветра К с определяется по табл 4.
    Таблица 4 - Коэффициент изменения концентрации окиси углерода в зависимости от скорости ветра

    Скорость ветра, м/с

    Коэффициент К с

    1

    2,70

    2

    2,00

    3

    1,50

    4

    1,20

    5

    1,05

    6

    1,00

    Значения коэффициента К ь, определяющего концентрацию окиси углерода в зависимости от относительной влажности воздуха, приведены в таблице 5.
    Таблица 5 - Коэффициент изменения концентрации окиси углерода в зависимости от влажности воздуха


    Относительная влажность, %

    Коэффициент К ь

    100

    1,45

    90

    1,30

    80

    1,15

    70

    1,00

    60

    0,85

    50

    0,75

    Коэффициент увеличения загрязнения воздуха окисью углерода К р пересе­чения улиц приведен в таблице 6.

    Таблица 6 - Коэффициент увеличения загрязнения воздуха окисью углерода в местах пересечения улиц

    Подставим значения коэффициентов в формулу и подсчитаем концентрацию окиси углерода:

    Вечером

    Вывод
    Полученные концентрации окиси углерода сравнили с ПДК выбросов автотранспорта по окиси углерода равной 5 мг/куб.м. днем выбросы превышают ПДК в 4,5раза вечером в 12,5 раз (стих ветер и увеличилось число машин)

    Для снижения загрязнённости атмосферы автомобильным транспортом:

    Установка на бензиновые двигатели катализаторов.

    Перевод бензиновых двигателей на метан

    Использовать топливо соответствующее нормам Евро-3.

    Посадить тополя вдоль проезжей части

    ТК дизель более экологичен, по возможности, использовать большие дизельные автобусы вместо ГАЗелей

    В отличие от промышленных источников загрязнения, привязанных к определенным площадкам и отделенных от жилой застройки санитарно-защитными зонами, автомобиль является движущимся источником загрязнения, который постоянно встречается в жилых районах и местах отдыха. Автотранспорт загрязняет нижние, приземные слои атмосферы и способствует накоплению вредных веществ в воздухе.

    Выхлопные газы автотранспорта представляют собой очень сложную смесь веществ (табл.2.1).

    Таблица 2.1

    Примерный состав выхлопных газов

    карбюраторных и дизельных двигателей

    Одни вещества, такие как азот, кислород, диоксид углерода, вода, не представляют опасности. Другие, и в первую очередь органические соединения, а также оксид углерода(II) и азота (IV), являются сильными токсикантами и при превышении допустимой дозы могут вызывать тяжелые отравления вплоть до смертельного исхода. Наиболее опасными компонентами автомобильных выбросов являются циклические и полициклические углеводороды, которые образуются при неполном сгорании топлива в условиях дефицита кислорода. Самое известное и опасное вещество из этого ряда – бенз(а)пирен.

    Каждый из вредных компонентов выхлопных газов оказывает специфическое воздействие на организм человека в целом и отдельные органы и системы органов.

    СО (угарный газ) – постоянный компонент в продуктах сгорания всех видов топлива. Он не имеет цвета и запаха, поэтому в малой концентрации его трудно обнаружить. Оксид углерода (II), попадая в легкие, легко соединяется с гемоглобином крови, образуя карбоксигемоглобин, не способный переносить кислород. Основные признаки отравления окисью углерода:

    ухудшение остроты зрения и способности оценивать длительность интервалов времени (концентрация СО более 0,4 об. %);

    нарушение некоторых психомоторных функций головного мозга (при содержании СО в воздухе в интервале от 2 до 5 об. %);

    ощутимые изменения работы сердца и легких (концентрация СО более 5 об. %);

    головная боль, сонливость, мышечные спазмы, нарушение дыхания и смерть (при содержании угарного газа 10 ÷ 80 об. %).

    Степень воздействия СО на организм зависит не только от его концентрации, но и от времени пребывания человека в условиях повышенного содержания этого газа. Образование карбоксигемоглобина в крови – процесс обратимый: если поступление в легкие СО прекращается, то через 3 – 4 часа его содержание в крови уменьшается в два раза. Однако необходимо знать, что оксид углерода (II) – химически стабильное вещество, и в атмосфере он может находиться в неизменном виде до четырех месяцев.

    NO, NO 2 – оксиды азота. Эти газы обладают специфическим запахом, который начитает ощущаться при концентрации в воздухе более 10 мг/м 3 . При контакте оксидов азота с водой образуются азотная (HNO 3 ) и азотистая (HNO 2 ) кислоты, повышенное содержание которых во вдыхаемом воздухе может вызвать отек легких.

    Ароматические (циклические и полициклические) углеводороды обладают наркотическим действием и в малых концентрациях (до 15 мг/м 3) снижают активность, вызывают головокружение и легкую головную боль. При длительном, более двух часов, нахождении человека в воздухе с содержанием углеводородов более 200 мг/м 3 развивается кашель, сильная головная боль и далее – удушье. Все ароматические углеводороды обладают более или менее выраженными канцерогенными свойствами, т.е. способностью вызывать и стимулировать рост злокачественных опухолей. Бенз(а)пирен С 20 Н 16 – самый сильный канцероген природного происхождения.

    Альдегиды (главным образом, формальдегид СН 2 О ) оказывают раздражающее действие на слизистые оболочки глаз, дыхательных путей. Запах формальдегида отмечается при концентрации в воздухе около 0,2 мг/м 3 . Длительное пребывание в атмосфере с содержанием формальдегида более 20 мг/м 3 приводит к слабости, головной боли, потере аппетита, бессоннице, сильному раздражению слизистой оболочки глаз.

    Об опасности вышеописанных веществ можно судить по величинам их ПДК, приведенным в табл. 2.2.

    Таблица 2.2

    Предельно допустимые концентрации в воздухе рабочей зоны (ПДК р.з.)

    для токсичных веществ в составе выхлопных газов автомобилей

    Для предупреждения опасности здоровью работающих в гаражах, где хранятся и подвергаются техническому осмотру и текущему ремонту автомобили, необходимо следить за накоплением вредных веществ, попадающих в воздух при выезде или въезде автомобилей, а также при их обслуживании. Один из методов подобного контроля – расчеты концентраций загрязняющих веществ в гараже, учитывающие количество передвигающихся единиц автотранспорта и деятельность по их обслуживающих.

    Для оценки уровня загрязнения воздуха выбросами автотранспорта в помещении одноэтажного гаража пользуются формулой

    G = g∙N∙k∙c, (2.4)

    где – количество вредного вещества, выделившегося за определенное время работы с учетом всех передвижений транспорта и его обслуживания, г;

    – удельное количество вредного вещества, отнесенное к одному выезду из помещения и условной мощности в одну лошадиную силу (л.с.) на один выезд. g определяют по табл. 2.5;

    – мощность автомобиля, л.с., (табл. 2.6);

    – число выездов автомобилей из помещения в течение одного часа, выезд/ч;

    – коэффициент для учета интенсивности движения автомобилей, определяется по табл. 2.7.

    Таблица 2.5

    Удельные количества вредных веществ,

    выделяющихся в составе выхлопных газов

    при одном выезде автомобиля из помещения, г/(л.с.∙выезд)

    Примечание. В графах 4 и 5 приведены данные для грузовых автомобилей и автобусов: в числителе – с карбюраторными двигателями; в знаменателе – с дизельными двигателями.

    Таблица 2.6

    Средняя мощность двигателей автомобилей различных типов

    Таблица 2.7

    Коэффициент, учитывающий интенсивность движения автомобилей

    Определив по формуле (2.4) количества вредных веществ, попавших в воздух гаража с выхлопными газами работающих двигателей автомобилей, можно рассчитать концентрации этих веществ и, сравнив их с соответствующими ПДК р.з. , тем самым установить степень опасности загрязнения воздуха для работающих в данном помещении.

    Пример.

    Оценить состояние воздуха в гараже с точки зрения концентрации в нем основных токсичных компонентов выхлопных газов – СО и NO 2 , через час после начала работы. За этот промежуток времени из помещения выехало восемь грузовых машин (из них 5 – с бензиновым двигателем) и 2 легковых автомобиля. Площадь гаража 1200 м 2 , высота 4 м. Кратность обмена воздуха в гараже в соответствии со СН и П, равна 10 объемов в час (n = 10/ч). Дать экологическую оценку уровня загрязнения воздуха (сравнением с соответствующими значениями ПДК).

    Решение:

    Вначале, воспользовавшись формулой 2.4, рассчитывают выброс загрязняющих веществ. Для этого по таблицам 2.5, 2.6 и 2.7 определяют соответственно удельные количества каждого вредного вещества, выделяющиеся при одном выезде (g), мощность двигателей автомобилей N и коэффициенты, учитывающие интенсивность движения автомобилей (с).

    Для расчета концентрации необходимо знать объем воздуха, участвующего в разбавлении, Эта величина определяется исходя из параметров помещения и условий естественной вентиляции:

    Через час от начала рабочего дня концентрации оксида углерода и диоксида азота составят:

    Вывод .

    Сравнение полученных расчетом величин концентраций СО и NO 2 cо значениями ПДК р.з. для этих веществ показывает, что порог опасности значительно превышен. Для сохранения здоровья работающих гараж должен быть оборудован системой принудительной вентиляции.

    Задача 1 .

    NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и два микроавтобуса. Три дизельных автобуса находились на посту текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 2 .

    NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали два грузовых автомобиля с карбюраторным двигателем и три микроавтобуса. Один дизельный автобус находился на посту текущего ремонта, один грузовой автомобиль с бензиновым двигателем – находился на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 3 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1400 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и два автобуса с бензиновым двигателем. Два дизельных автобуса находились на посту текущего ремонта, три (с бензиновым двигателем) – на посту мойки и уборки. . Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 4 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 680 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через четыре часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и три микроавтобуса. Один дизельный автобус находился на текущем ремонте, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 5 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 740 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два микроавтобуса. Три дизельных автобуса находились на посту технического обслуживания и текущего ремонта. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 6 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1040 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и один микроавтобус. Два грузовых автомобиля находились на посту текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 7 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1260 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через четыре часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два автобуса с карбюраторным двигателем. Три дизельных автобуса находились на посту текущего ремонта. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 8 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1200 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и три микроавтобуса. Два микроавтобуса находились на посту текущего ремонта и техобслуживания, один автобус с бензиновым двигателем – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 9 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 880 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и один микроавтобус. Один дизельный автобус находился на посту технического обслуживания, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 10 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1120 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали два грузовых автомобиля и два микроавтобуса. Три легковых автомобиля находились на посту текущего ремонта, один– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 11 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 840 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и один микроавтобус. Три дизельных автобуса находились на посту текущего ремонта, два (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 12 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1240 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и два микроавтобуса. Два дизельных автобуса находились на посту технического обслуживания, один легковой автомобиль – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 10.

    Задача 13 .

    NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали два легковых автомобиля и один микроавтобус. Четыре дизельных автобуса находились на посту текущего ремонта, два автобуса с бензиновым двигателем – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 14 .

    NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и три микроавтобуса. Один дизельный автобус находился на посту текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 10.

    Задача 15 .

    NО 2 и углерода СО через пять часов после начала рабочего дня. За это время из гаража выехали семь легковых автомобилей и два микроавтобуса. Три микроавтобуса находились на посту текущего ремонта, один автобус с бензиновым двигателем и один джип– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 16 .

    NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два микроавтобуса. Три автобуса с карбюраторным двигателем находились на посту текущего ремонта, один микроавтобус– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 17 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1280 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и три микроавтобуса. Три микроавтобуса были на текущем ремонте, один автобус (с бензиновым двигателем) находился на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 18 .

    NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали десять автобусов с бензиновым двигателем и один микроавтобус. Два дизельных автобуса находились на посту текущего ремонта, один легковой автомобиль – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 19 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1600 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и три микроавтобуса. Один дизельный автобус находился на текущем ремонте, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 20 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1280 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и один грузовой. Два микроавтобуса находились на посту текущего ремонта и техобслуживания, один легковой автомобиль– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 21 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 960 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и три микроавтобуса. Один дизельный автобус находился на посту текущего ремонта. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 22 .

    NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и один микроавтобус. Два автобуса с карбюраторным двигателем находились на посту текущего ремонта, один микроавтобус– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 23 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1280 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через четыре часа после начала рабочего дня. За это время из гаража выехали семь легковых автомобилей и три микроавтобуса. Четыре дизельных автобуса находились на посту технического обслуживания текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, согласно строительным нормам, равна 12.

    Задача 24 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 640 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через один час после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два микроавтобуса. Один дизельный автобус находился на посту текущего ремонта, два (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 25 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1920 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали шесть легковых автомобилей и четыре микроавтобуса. Два дизельных автобуса находились на посту текущего ремонта, три (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 10.

    Задача 26 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1280 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали восемь легковых автомобилей и два микроавтобуса. Два дизельных автобуса находились на посту текущего ремонта, два (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 27 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 960 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через два часа после начала рабочего дня. За это время из гаража выехали четыре легковых автомобиля и три микроавтобуса. Три дизельных автобуса находились на посту текущего ремонта, один (с бензиновым двигателем) – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 28 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 800 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через четыре часа после начала рабочего дня. За это время из гаража выехали три легковых автомобиля и два микроавтобуса. Три микроавтобуса находились на посту технического обслуживания и текущего ремонта, один автобус с бензиновым двигателем – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 29 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1600 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали восемь легковых автомобилей и четыре микроавтобуса. Три дизельных автобуса находились на посту текущего ремонта, один легковой автомобиль– на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    Задача 30 .

    Дать экологическую оценку загрязнения воздуха гаража площадью 1440 м 3 и высотой 4 м оксидами азота NО 2 и углерода СО через три часа после начала рабочего дня. За это время из гаража выехали четыре автобуса с карбюраторным двигателем и два микроавтобуса. Три дизельных автобуса находились на посту текущего ремонта, два микроавтобуса и один легковой автомобиль – на посту мойки и уборки. Кратность обмена воздуха в помещении, в соответствии со строительными нормами, равна 12.

    ЗАГРЯЗНЕНИЕ ЗЕМЕЛЬ

    Под земельными ресурсами понимаются земли, систематически используемые или пригодные к использованию для конкретных целей.

    Загрязнение земель – это привнесение, накопление и возникновение на поверхностном слое земли (почвы) новых, обычно не характерных для нее физических свойств, химических или биологических агентов или превышение указанных природных параметров почвы по сравнению со среднемноголетним уровнем. Оно может быть вызвано попаданием в почву бытовых и производственных отходов, примесей из загрязненного атмосферного воздуха и водных источников. Накопление химических веществ, которые вносятся в почву для повышения урожайности сельскохозяйственных культур (удобрений, средств защиты растений), также приводит к изменению ее природных свойств.

    Загрязнение почвы меняет ход почвообразовательного процесса, резко снижает урожаи, вызывает накопление токсичных веществ, таких как тяжелые металлы, пестициды, в растениях. Из них эти токсичные вещества прямо или косвенно (с продуктами растительного или животного происхождения) попадают в организм человека.

    Привнесение загрязняющих веществ в почву ослабляет ее способность к самоочищению от болезнетворных и других чуждых ей микроорганизмов, что увеличивает опасность микробиологического загрязнения и распространения болезней. Так, в незагрязненных почвах возбудители дизентерии и тифа сохраняются в течение 2-3 суток, а в загрязненных этот срок увеличивается для дизентерии до четырех-пяти месяцев, а для тифа – до полутора лет.

    Защита и восстановление земель осуществляется путем ограничения и запрещения использовать в сельскохозяйственной практике токсичных и биохимически стойких веществ в качестве пестицидов, превращения в компост бытовых отходов без их предварительной сортировки (для удаления опасных компонентов), борьбы с различными типами эрозии почв, рекультивации земель.

    Экологические требования к современному автомобилю являются в настоящее время приоритетными. Экологическая безопасность - это свойство автомобиля снижать негативные последствия влияния эксплуатации автомобиля на участников движения и окружающую среду. Она направлена на снижение токсичности отработанных газов, уменьшение шума, снижение радиопомех при движении автомобиля. Несмотря на многочисленные попытки заменить двигатель внутреннего сгорания каким-либо другим, не выделяющим токсичные вещества, альтернативы ему пока нет. А если принципиально новый двигатель и появится, то переналадка производства для его крупносерийного выпуска потребует грандиозных капиталовложений и произойдет далеко не сразу. Вместе с тем уже сейчас человечество подошло к той черте, когда без экологически чистого автомобиля просто не обойтись. И выход пока видится один - надо если не полностью исключить, то во всяком случае свести к минимуму вредные выбросы ДВС.

    Основными источниками загрязнения воздушной среды автомобилей являются отработавшие газы ДВС, картерные газы, топливные испарения.

    Как образуются доставляющие всем столько хлопот вредные вещества в отработавших газах? Известно, что топливо сгорает в камере при взаимодействии с кислородом воздуха. Этот процесс сопровождается интенсивным выделением тепла, которое и преобразуется в работу. Теоретически для сгорания 1 кг бензина требуется 14,7 кг воздуха, однако на практике этого количества оказывается недостаточно. Дело в том, что воспламенение и сгорание бензино-воздушной смеси (ее еще называют горючей) длится тысячные доли секунды, и к такому быстрому процессу она недостаточно хорошо подготовлена. В смеси остаются газы от предыдущего цикла, препятствующие доступу кислорода к частицам топлива; кроме того, не удается добиться ее идеального перемешивания по объему цилиндра, особенно у непрогретого двигателя и на переходных режимах. В результате не все топливо окисляется до конечных продуктов, и для нормального протекания процесса сгорания его приходится добавлять. Если в горючей смеси количество топлива больше расчетного, смесь называется богатой, если меньше - бедной. При средних нагрузках главное внимание обращается на экономичность, поэтому в камеру сгорания подается несколько обедненная смесь. При небольшом обогащении смеси скорость ее сгорания увеличивается, в камере развиваются более высокие температура и давление. Для максимальных нагрузок или резкого перехода с малой нагрузки на большую требуется богатая смесь. Большое количество топлива подается в цилиндры и при пуске холодного двигателя, когда горючую смесь образуют только самые легкие фракции топлива. В этих случаях из-за недостатка кислорода топливо сгорает не полностью. Двигатель хотя и развивает большую мощность, но работает не экономично и выбрасывает в атмосферу токсичные продукты неполного сгорания.

    Наиболее токсичными компонентами отработавших газов бензиновых двигателей являются: оксид углерода (СО), оксиды азота (NОx), углеводороды (СnHm), а в случае применения этилированного бензина - свинец. Состав выбросов дизельных двигателей отличается от бензиновых. В дизельном двигателе происходит более полное сгорание топлива. При этом образуется меньше окиси углерода и несгоревших углеводородов. Но, вместе с этим, за счет избытка воздуха в дизеле образуется большее количество оксидов азота. Дизельные двигатели, кроме всего прочего, выбрасывают твердые частицы (сажу). Сажа, содержащаяся в выхлопе, нетоксична, но она адсорбирует на поверхности своих частиц канцерогенные углеводороды. При сгорании низкокачественного дизельного топлива, содержащего серу, образуется сернистый ангидрид.

    Как же эти вредные компоненты воздействуют на человека и окружающую среду? В обычных условиях СО - бесцветный газ без запаха, он легче воздуха и поэтому может легко распространятся в атмосфере. При действии на человека СО вызывает головную боль, головокружение, быструю утомляемость, раздражительность, сонливость, боли в области сердца. Оксид азота NO - бесцветный газ, диоксид азота NO2- газ красно-бурого цвета с характерным запахом. Оксиды азота при попадании в организм человека соединяются с водой. При этом они образуют в дыхательных путях соединения азотной и азотистой кислоты. Оксиды азота раздражающе действуют на слизистые оболочки глаз, носа, рта. Воздействие NO2 способствует развитию заболеваний легких. Некоторые углеводороды СН являются сильнейшими канцерогенными веществами (например,бенз(а)пирен), переносчиками которых могут быть частички сажи, содержащиеся в отработавших газах.

    В скопившихся над асфальтом облаках СН и NOx под воздействием света происходят химические реакции. Разложение оксидов азота приводит к образованию озона. Вообще-то озон не стоек и быстро распадается, но только не в присутствии углеводородов (СН) - они замедляют процесс распада озона, и он активно вступает в реакции с частичками влаги и другими соединениями. Образуется стойкое облако мутного смога. Озон разъедает глаза и легкие, а выбросы NОх участвуют в формировании кислотных дождей. Автотранспорт является одним из крупнейших загрязнителей атмосферного воздуха. В России на его долю в середине 90-х годов приходилось 80% выбросов свинца, 59% - оксида углерода, 32% - оксидов азота. К числу приоритетных загрязнителей атмосферы, поступающих в городскую атмосферу с отработавшими газами автомобилей, относятся свинец, бенз(а)пирен, летучие углеводороды. На долю первого из них приходится более 50% экономического ущерба от загрязнения атмосферы автотранспортом. Содержание бенз(а)пирена, одного из сильнейших канцерогенов, в атмосфере 17-ти (из 23 перечисленных в таблице 1 городов превышает предельно-допустимые нормы. Города с превалирующим вкладом выбросов автотранспорта в валовые выбросы более 50% при величине выбросов от автотранспорта не менее 50 тыс. тонн в год и загрязнение атмосферы. Таблица 1

    Во многих городах мира концентрации вредных веществ в воздухе, создаваемые выбросами автотранспорта, превышают стандарты качества атмосферного воздуха.

    Во многих городах нашей страны уровень загрязнения воздуха превышает нормативы предельно допустимых концентраций. В связи с этим проблема снижения негативного воздействия автотранспорта на здоровье людей, воздушный и водный бассейны, растительный и животный мир, почвы весьма актуальна.

    Уровень загрязнения воздуха вредными примесями зависит не только от количества выбросов вредных веществ, но и в большей степени от условий рассеивания примесей в атмосфере. При определенных метеорологических условиях концентрации примесей в воздухе увеличиваются и могут достигать опасных значений.

    Кратковременное сокращение выбросов в периоды увеличения загрязнения воздуха может существенно улучшить состояние воздушного бассейна. Вопросы регулирования выбросов и прогноза загрязнения атмосферы тесно связаны между собой.

    Существующий уровень техники в нашей стране не позволяет обеспечить нужную очистку выбросов, поэтому, естественно, возникает вопрос о возможности уменьшения выбросов хотя бы в сравнительно короткие периоды времени, когда образуется неблагоприятная метеорологическая обстановка, при которой может создаваться опасное загрязнение воздуха. Разработка краткосрочного прогноза загрязнения воздуха в настоящее время является актуальной задачей.

    Полное решение проблемы уменьшения загрязнения воздуха автотранспортом зависит, в первую очередь, от технических мероприятий, касающихся повышения экологичности каждого автомобиля и уменьшения токсичности автомобильных выбросов. Это - долгосрочная программа, требующая больших материальных затрат и времени. Определить целесообразность и достаточность тех или иных технических и организационных мероприятий по снижению выбросов автотранспорта позволяет долгосрочный прогноз загрязнения воздуха с учетом информации о существующих уровнях загрязнения воздуха в городах и мероприятий по снижению выбросов автотранспорта .

    Современное состояние загрязнения воздуха автотранспортом и мероприятия по снижению выбросов в различных странах.

    Прежде чем перейти к вопросам определения неблагоприятных метеорологических условий для выбросов автотранспорта и разработке схем прогноза загрязнения воздуха, целесообразно провести анализ современного состояния загрязнения воздуха автотранспортом в городах России и за рубежом, а также состава автомобильных выбросов. Легковой автомобиль стал одним из необходимых атрибутов повседневной жизни людей в развитых странах. В 90-е годы в мире насчитывалось свыше 600 млн, автомобилей, по прогнозам к 2010 г. их число может достигнуть 1 млрд. Более 1/3 автомобильного парка сосредоточено в Западной Европе и Северной Америке. При росте населения за последние годы в 4-х развитых странах - Германии, Швейцарии, США и Франции в 2 раза парк автомобилей возрос в 4 раза. Доля городских передвижений на общественном транспорте для большинства городов составляет 15 - 20%. В западноевропейских странах на 1000 жителей приходится в среднем 322 легковых автомобиля, в США - 540, Венгрии -168. В 2000 г. японский автомобильный парк насчитывал 58 млн. автомобилей (т.е. 1 автомобиль на 2 человека). В развивающихся странах владение легковыми автомобилями на душу населения значительно отстает от развитых стран (в 1985 г. оно составило 5%). Однако следует отметить в последние годы рост автомобильного парка бывших соц.стран и развивающихся стран за счет импорта устаревших автомобилей с «грязными» двигателями.

    Так, автопарк личного транспорта Москвы в 2008 г. составил 850 тыс. единиц. Отмечается также, что ежедневно через Москву проезжает 120 тыс. иногородних автомобилей.

    В общем валовом выбросе вредных веществ в атмосферу в странах ЕЭС на долю автотранспорта приходится до 70% выбросов оксида углерода, до 50% выбросов оксидов азота (во Франции и ФРГ до 60 - 70%) и до 45% выбросов углеводородов. Почти 90% выбросов свинца падает на долю автотранспорта в странах ЕЭС. В ФРГ выброс свинца составляет 3 тыс. тонн в год. В ФРГ на долю выбросов автотранспорта приходится 59,2% оксида углерода, 57,3% оксидов азота, 76,8% углеводородов, 10,7% пыли и 3,6% диоксида серы от валовых выбросов в атмосферу всеми видами транспортных средств.

    В Италии вклад автотранспорта в загрязнение атмосферы также преобладает и составляет: по оксидам азота - 61,4%, оксиду углерода - 90т9% углеводородам - 76,9%.

    В Российской Федерации по данным ежегодных обзоров в 2005 г. выбросы автотранспорта составили 62% от суммарных выбросов вредных веществ (67% по оксиду углерода, 32% по диоксиду азота, 34% по углеводородам) .

    Преобладание выбросов автотранспорта является особенностью крупных городов, где проживает большинство населения. В таблице 1.1 показан вклад выбросов автотранспорта оксида углерода, углеводородов и диоксида азота от суммарных выбросов каждого вещества для некоторых крупных городов мира.

    Во многих городах мира концентрации диоксида азота и оксида углерода, основных веществ присутствующих в выбросах автотранспорта, превышают стандарты качества атмосферного воздуха. Для сравнения уровней загрязнения воздуха в городах бывшего СССР и других стран на рис.1.1 и 1.2 приведены средние концентрации оксида углерода и диоксида азота. В-Сантьяго, Париже загрязнение воздуха оксидом углерода было выше, чем в Санкт-Петербурге, Москве, Тбилиси. Наиболее высокие уровни среднегодовых концентраций диоксида азота характерны для Москвы, Одессы, Алматы. Максимальные разовые концентрации, которые отмечались во многих городах мира на крупных автомагистралях в часы "пик" в 10 - 15 раз превышают среднегодовые концентрации.

    По данным ежегодных обзоров о выбросах вредных веществ во многих городах России выбросы автотранспорта преобладают над выбросами от промышленных источников причем, в 12 городах выбросы автотранспорта превышают 100 тыс.т./год. Наибольшие выбросы от автотранспорта в 2005 г. были отмечены в городах Москве, Тюмени, Перми, Хабаровске и др. В таблице 1.2 приводятся города с выбросами автотранспорта выше 100 тыс.т./год и вкладом автотранспорта более 50% в валовые выбросы.

    Повышенное загрязнение воздуха выбросами автотранспорта характерно для городов, как зарубежных, так и России, причем уровни содержания токсичных веществ в городском воздухе соизмеримы. Основными причинами такой соизмеримости (при значительно меньшем автопарке в нашей стране) являются крайне низкое техническое состояние наших автомобилей и некачественное топливо.

    В настоящее время отсутствуют точные количественные оценки ущерба, наносимого выбросами автотранспорта окружающей среде и народному хозяйству, однако значительная доля ущерба (до 80%) связывается с заболеваниями населения. По данным американских ученых, при эпидемиях гриппа количество заболеваний в городах с повышенным уровнем загрязнения диоксидом азота и оксидом углерода в 10 раз больше, чем в городах, где экологическая обстановка благополучная.

    Значительный ущерб здоровью людей наносят выбросы свинца и его соединений, содержащихся в автомобильном топливе.

    Исследования, проведенные в городах Японии и Каире, показали, что концентрации свинца в крови дорожных полицейских и водителей были в 2 - 2,5 раза выше, чем у сельских жителей. Уровни свинца не коррелируют с возрастом, сроком службы. Говорится о том, что такие уровни свинца в крови у дорожных полицейских могут рассматриваться, как приемлемые для данной профессии.

    Выбросы от автотранспорта являются одной из причин повреждения и гибели лесов в некоторых странах Европы. В целом в Альпах вследствие загрязнения воздушного бассейна повреждено более 80% лесов.

    Наиболее широкие исследования ведутся по оценке негативного воздействия свинца, обладающего способностью накапливаться в растениях, в том числе и сельскохозяйственных культурах.

    Установлено, что уровень содержания свинца в растениях превышает ПДК уже при интенсивности движения транспорта свыше 2500 -3000 машин в сутки. По оценкам немецких специалистов, ежегодный ущерб окружающей среде, обусловленный задержками транспорта на перекрестках {когда происходит наибольшее выделение выхлопных газов) в городах ФРГ составляет около 150 млрд.марок. Для 39 городов США в 2000 г. эти издержки оценены в 41 млн.долларов, в для Лондона в 10 млн. ф.ст. .

    Поэтому во всем мире на первый план вынесена проблема снижения негативного воздействия автотранспорта на здоровье людей, воздушный и водный бассейны, растительный и животный мир.

    Для этого, прежде всего, необходимо выяснить какие вредные вещества присутствуют в выхлопных газах автомобилей и в каком количестве.

    Состав отработавших газов (ОГ) зависит от типа автомобиля и потребляемого топлива. В зависимости от структуры автомобильного парка меняется структура вклада выбросов автотранспорта в загрязнение атмосферы в разных странах. В общем парке транспортных средств Западной Европы и Северной Америки большую часть составляют легковые автомобили. В Восточной Европе преобладает грузовой транспорт. Грузовой автопарк в большинстве стран состоит из дизельных и автомобилей. В странах Восточной Европы (в том числе и нашей) довольно велико количество автомобилей, работающих на бензине, то же можно сказать про США.

    Парк легковых автомобилей оснащен в основном двигателями с искровым зажиганием, работающими на бензине. В некоторых странах создано относительно большое количество автомобилей работающих на газе. В России в последнее время наблюдается тенденция перевода легкового и грузового транспорта на газовое топливо. В Западной Европе нашли большое применение легковые автомобили с дизельными двигателями, и их популярность растет.

    Принцип работы двигателей внутреннего сгорания карбюраторных и дизельных - различный, поэтому составы отработавших газов также различны.

    Для сравнения приведены данные для карбюраторного двигателя с использованием и без использования катализатора. Дизельные двигатели принято считать более экологичными. Однако, дизельные двигатели отличаются повышенными выбросами сажи, образующейся вследствие перегрузки и плохой регулировки двигателей и системы подачи топлива. Сажа насыщена канцерогенными углеводородами и микроэлементами, которые очень вредны для здоровья человека.

    К основным загрязняющим компонентам в отработавших газах (ОГ) автомобилей относятся: оксид углерода (СО), углеводороды (СХНУ), оксиды азота (NOX) и сажевый аэрозоль.

    Выброс малых составляющих от автомобилей, работающих на бензине, превосходит выброс от автомобилей, работающих на дизельном топливе. Исключение составляет выброс диоксида серы.

    Для автомобилей, работающих на этилированных сортах бензина, характерно присутствие в ОГ соединений свинца.

    30 мая 1984 г. было юридически закреплено решение ЕЭК ООН, по которому все новые модели автомобилей должны эксплуатироваться с 1986 г. на бензинах без свинца .

    Информация об удельных выбросах единичного автомобиля с различными типами двигателей необходима для разработки мероприятий по снижению выбросов, тех либо иных веществ. Если в городе или в районе магистралей наблюдается повышенное содержание сажи в воздухе, мероприятия по снижению выбросов должны, в первую очередь, касаться дизельных автомобилей. Оснащение бензиновых двигателей катализаторами значительно уменьшает пробеговый выброс углеводородов и оксидов азота. Следовательно, в городах с большими уровнями загрязнения воздуха этими веществами, как одну из мер снижения выбросов автотранспорта, можно предложить - оснащение катализаторами карбюраторных автомобилей.

    Надо отметить, что в зависимости от режима работы двигателя и температуры окружающей среды концентрации загрязняющих веществ в отработавших газах меняются.

    Известно, что в городских условиях двигатель автомобиля не может работать на каком-то одном режиме. Учет количественных различий в содержании токсических компонент в выхлопных газах при различных режимах работы автомобильных двигателей имеет особое значение при эксплуатации автомобилей в городе.

    Уменьшению загрязнения воздуха выбросами автотранспорта способствует правильная организация движения транспорта на улицах городов. Например, при безостановочном проезде («зеленая волна», развязка на разных уровнях) выбросы оксида углерода и углеводородов на перекрестках снижаются в несколько раз.

    Наибольшее количество выбросов оксида углерода и углеводородов поступает в атмосферу при малых скоростях движения автомобиля. При достижении скорости 40 км/час выбросы углеводородов практически не меняются. Выбросы оксида углерода постепенно понижаются с увеличением скорости движения. Минимальное количество окислов азота автомобиль выбрасывает при скорости 60 - 70 км/час.

    Наименьшее количество оксида углерода, углеводородов и окислов азота выбрасывается автомобилями при температуре окружающей среды 20°С. С увеличением температуры усиливаются процессы испарения топлива, что приводит к увеличению концентрации вредных веществ в ОГ автомобиля. При уменьшении температуры окружающей среды увеличивается время прогрева двигателя, что приводит к увеличению концентраций вредных веществ в ОГ автомобиля.

    Количество автомобилей год от года растет, следовательно для уменьшения выбросов всего парка автомобилей следует уменьшить выбросы каждого автомобиля. Снижение выбросов от автотранспорта обусловлено, в первую очередь, улучшением конструкции двигателей и ужесточением допустимых норм содержания вредных веществ в ОГ. Появилась тенденция уменьшения пороговых выбросов для парка автомобилей США с 1970 г. и в перспективе до 2020 г.

    В западных странах с развитым автомобилестроением накоплен определенный опыт решения проблем, связанных с уменьшением загрязнения атмосферного воздуха, рисунок 1 .

    Рисунок 1. Блок-схема модели оценки загрязнения воздушной среды ТП

    Все мероприятия можно разделить на 3 основные группы. Мероприятия первой группы касаются технических вопросов развития автомобилестроения в стране:

    • - совершенствование существующих двигателей (улучшение системы зажигания, в том числе оснащение бесконтактными системами зажигания);
    • - изменение процессов подачи топлива в цилиндры двигателей, в том числе применение электронного впрыскивания топлива;
    • - обеспечение рециркуляции отработавших газов, а также установка микропроцессорных систем управления двигателями.

    Одним из мощных источников загрязнения городской воздушной среды является автомобильный транспорт, увеличение численности которого привело к насыщению городов легковыми автомобилями и переключению на них большей части пассажирских перевозок. Это резко ухудшает санитарные условия проживания в крупных городах: автомобиль не только загрязняет воздушную среду и создает шум, но, перевозя небольшое число пассажиров и работая на наиболее ценных видах топлива, использует его недостаточно эффективно. В связи с этим возникла необходимость разработки ряда мероприятий, позволяющих предотвратить загрязнение окружающей среды от автотранспорта.

    С целью снижения негативного воздействия автотранспорта на атмосферный воздух в рамках представленной классификационной схемы (рис. 3) предусмотрены организационные (архитектурно-планировочные), технологические и специальные инженерно-экологические мероприятия.

    Организационные мероприятия включают специальные приемы застройки и озеленение автомагистралей, размещение жилой застройки по принципу зонирования (в первом эшелоне застройки - от магистрали - размешаются здания пониженной этажности, затем - дома повышенной этажности и в глубине застройки - детские и лечебно-оздоровительные учреждения. Тротуары, жилые, торговые и общественные здания изолируются от проезжей части улиц с напряженным движением многорядными древесно-кустарниковыми посадками). Важное значение имеют сооружение транс-портных развязок, кольцевых дорог, использование подземного пространства для размещения гаражей и автостоянок.

    Наибольший выброс выхлопных газов имеет место при задержках машин у светофоров, при стоянке с не выключенным двигателем в ожидании зеленого света, при трогании с места и форсировании работы мотора. Поэтому в целях снижения выбросов необходимо устранить препятствия на пути свободного движения потока автомашин. В частности, сооружают специальные автомагистрали, не пересекающиеся на одном уровне с движением машин или пешеходов, специальные переходы для пешеходов на всех пунктах скопления машин, а также эстакады или тоннели для разгрузки перекрывающихся потоков транспорта.

    Для снижения загазованности воздушной среды необходимо ограничить количество вредных веществ, выделяемых каждым автомобилем, т.е. установить нормы выброса токсичных веществ с выхлопными газами. Соответствие автомобилей указанным стандартам (в частности, по содержанию оксида углерода и углеводородов в выхлопных газах) проверяют инспектора ГИБДД.

    В качестве технологических мероприятий, которые могут резко снизить токсичность выхлопных газов, можно выделить следующие:


    Регулировка двигателей;

    Изменение состава топлива;

    Использование энергии торможения;

    Перевод автомобилей на сжиженный газ;

    Совершенствование двигателей внутреннего сгорания;

    Применение альтернативных видов топлива;

    Внедрение гибридных двигателей;

    Внедрение в эксплуатацию электромобилей, солнечных автомобилей, а также применение электрического транспорта и др.

    Изменение состава топлива. Известно, что в целях предотвращения детонации горючего в двигателях автомашин в него добавляют тетраэтилсвинец , который делает выхлопные газы особо токсичными. Поэтому большие усилия были затрачены на замену указанного вещества на менее опасные, а также на получение стойкого к детонации бензина. При введении в топливо т.н. присадок можно существенно уменьшить количество некоторых токсичных веществ: сажи, альдегидов , оксида углерода и других. Так, для карбюраторных, двигателей самым эффективным оказались смеси различных спиртов.

    Использование энергии торможения. Заметного сокращения расхода энергии, а значит, количества сжигаемого топлива и уменьшения загрязнения воздушной среды можно достичь, если использовать энергию, затрачиваемую на торможение. Указанная рекуперация была впервые успешно реализована на электрическом транспорте. Ныне были построены и успешно использованы на автобусах маховичный и гидропневматический рекуператоры. При этом экономия топлива составила 27-40%. объем выхлопных газов снизился на 39-49%.

    Перевод автомобилей на сжиженный газ приводит к тому, что в выхлопе газобаллонных автомобилей содержится в 3-4 раза меньше оксида углерода, нежели в выхлопе бензиновых двигателей. При загрузке в баллоны 300 л сжиженного газа автобус способен пройти без заправки до 500 км. Если добавить к этому, что газ дешевле бензина, то достоинства газобаллонного автомобиля становятся еще более наглядными.

    Совершенствование двигателей внутреннего сгорания. Например, в США разработан карбюратор с раздельным смесеобразованием. Он позволяет кроме обычной смеси получать обогащенную, которая подается в специальную предкамеру со свечой зажигания. Благодаря этому происходит полное сгорание рабочей смеси, что, в свою очередь, позволяет свести до минимума содержание оксида углерода и углеводородов в выхлопных газах. Создан карбюратор, благодаря которому возможно использовать низкооктановые сорта бензина без антидетонационных добавок. В этом устройстве, со-стоящем из теплообменника, смесителя и реактора, бензин не только распыляется, но и расщепляется с помощью катализатора на более простые газы, например метан .

    Во многих странах мира разрабатываются новые, более совершенные двигатели, которые можно устанавливать на серийных автомобилях. В частности, указывают на перспективность роторно-поршневого двигателя Ванкеля, который компактнее поршневых двигателей: объем в среднем на 30%, а масса на 11 % меньше.

    Альтернативное топливо. Весьма перспективным заменителем традиционного топлива для автомобилей является водород. Двигатель, работающий на жидком водороде , не дает никаких запахов, не выделяет таких токсичных веществ, как свинец, оксиды азота, углерода. Жидкий водород почти в десять раз легче бензина. На одном из международных автомобильных конкурсов первое место занял «Фольксваген», для которого топливом служил водород. Интересно, что его отработанные газы были чище городского воздуха, который засасывался в карбюратор.

    Признаётся перспективным автомобиль с размещенным на его шасси химическим реактором, в котором вырабатывается водород из углеводородов. Расчеты показали, что иметь такой реактор на машине экономичнее, нежели возить это топливо в специальных баллонах.

    Преградами на пути широкого внедрения водорода в качестве топлива для автомобильных двигателей является сложность получения его в достаточно больших количествах и необходимость обеспечения высокого уровня безопасности при осуществлении процесса горения водорода.

    К другим видам альтернативного топлива можно отнести этиловый и метиловый спирты и их смеси. В США создан двигатель, в котором вместо бензина используется жидкий азот. Бак с охлажденным до жидкого состояния азотом соединен с испарителем, окруженным «рубашкой», в которой циркулирует воздух. Жидкий азот , попадая в испаритель, превращается вследствие быстрого повышения температуры в газ, который выходит под большим давлением из испарителя и приводит в действие электрогенератор. Вырабатываемый последним ток после выпрямления подается для питания электродвигателей, установленных на колесах. Выхлопные газы такого автомобиля состоят из чистого азота, который, естественно, не загрязняет атмосферу.

    Перспективно широкое внедрение так называемых гибридных двигателей: в городе при относительно небольших скоростях должен использоваться только электромотор, питающийся от небольших батарей и обеспечивающий запас хода на 40-50 км, а при выезде за город должен включаться обычный двигатель. Одновременно электромотор может быть использован как генератор для подзарядки аккумулятора.

    Электромобили. Весьма перспективным является проект массового перехода от автомобилей с бензиновыми и дизельными двигателями на электромобили, которые действуют от батарей - аккумуляторов, подзаряжаемых на станциях.

    Электромобили бездымны, бесшумны, их выделения нетоксичны, они просты в управлений, а эксплуатация значительно экономичнее, особенно в городах. Этому способствует относительно небольшой среднесуточный пробег автомобилей в городе, ограничение скорости и возможность организации сети зарядных станций для батарей - аккумуляторов. Сейчас в мире эксплуатируется сотни тысяч электромобилей различного назначения, и парк их непрерывно растет.

    Дальнейшие успехи в разработке электромобилей в основном, будут зависеть от решения ряда технических проблем (создания компактных, недорогих и легких аккумуляторов, разработка быстродействующих зарядных устройств). Укажем также на необходимость резкого уве-личения резервных мощностей электростанций, поскольку они недостаточны, если потребуется в перспективе ежедневная подза-рядка многих миллионов электромобилей.

    Солнечный автомобиль использует солнечную (или световую) энергию, которая улавливается при помощи специальных солнечных батарей . Электромобиль на спиральных гидридно-никелевых батареях прошел несколько лет назад без подзарядки 601 км.

    Как же побыстрее и подешевле создать массовый экологически чистый автомобиль? Прежде всего, считают специалисты, необходимо усовершенствовать существующие конструкции: постараться уменьшить расход топлива, само топливо сделать, более приемлемым с точки зрения чистоты выхлопов, добиться снижения сопротивления воздуха, так как оно при больших скоростях современных автомобилей отбирает большую долю энергии. Можно ис-пользовать новые, например, керамические материалы для двигателей, чтобы повысить их КПД (из-за достижения более высоких температур), что приведет к снижению потребления топлива и, соответственно, к уменьшению загрязнения атмосферного воздуха. Начиная с 1998 г. компании «Дженерал моторе», «Форд» и «Крайслер» начали реализовывать программу выпуска экологичных автомобилей.

    Улучшению качества атмосферного воздуха в сочетании со снижением шума способствует применение электрического транспорта (трамвая, троллейбуса).

    Специальными инженерно-техническими мероприятиями, снижающими выбросы токсичных веществ от автотранспорта как основного передвижного источника, дающего наибольший вклад в загрязнение атмосферы, является применение нейтрализаторов, катализаторов.

    Нейтрализаторы выхлопных газов. К настоящему времени выпускаются нейтрализаторы следующих видов: каталитические (используются твердые катализаторы), пламенные (дожигание примесей в открытом пламени), термические (метод беспламенного окисления) и жидкостные (с помощью химического связывания примесей жидкими реагентами). При этом широкое распространение получили каталитические нейтрализаторы, которые превращают токсичный оксид углерода в малоопасный диоксид.