Прочностные расчеты механизма. Проверка работы механизма подъема груза крана в режиме неустановившегося движения Схемы и конструктивные особенности механизмов подъема груза

Блоки предназначены для поддержания и изменения направления движения каната диаметром . Блоки подразделяют на подвижные, ось которых перемещается в пространстве, и неподвижные. Разновидностью неподвижных блоков является уравнительный блок, который при подъеме и опускании груза не вращается, а служит для уравнивания длины неравномерно вытягивающихся ветвей каната в сдвоенном полиспасте.

Блоки для канатов изготовляют из стали литьем, сваркой или штамповкой. Для литых блоков применяют сталь с механическими свойствами не хуже, чем у стали 45Л-11 , для штампованных - не хуже, чем у стали 45 , и для сварных - не хуже, чем у стали Ст 3 .

Профиль ручья блока должен обеспечивать беспрепятственный вход и выход каната и иметь наибольшую площадь соприкосновения с ним (наибольшую площадь поверхности ручья). Исходя из этого рекомендуется соотношение основных размеров блоков принимать такими, как показано на рис.3.10.

Блоки должны иметь устройство (скоба), исключающее выход каната из ручья блока. Зазор между указанным устройством и ребордой блока должен составлять не более 20% диаметра каната .

Барабаны предназначены для наматывания гибкого тягового элемента (каната или цепи). Изготавливают их из чугуна (литые) или стали (литые или сварные) .

Для снижения удельного давления между канатом и барабаном и предотвращения трения каната о соседний виток на поверхности барабана делают винтовые канавки с шагом мм. Если на барабан наматывается одна ветвь (одинарный полиспаст), он имеет канавки только одного направления. При двух ветвях (сдвоенный полиспаст) канавки выполняют правого и левого направления.

Конструктивное исполнение барабанов должно предусматривать размещение деталей для закрепления каната на барабане, которое может осуществляться при помощи накладных планок, прижимных планок или клина (рис.3.9).

Минимальные диаметры барабанов D , блоков D бл , и уравнительных блоков D ур.бл. по средней линии огибаемых стальными канатами, определяют по формулам:

С увеличением отношения D/d k долговечность каната возрастает, так как уменьшаются контактные и изгибные напряжения.

Полученный по формуле (3.9) диаметр барабана D следует округлить в большую сторону до значения из ряда: 160; 200; 250; 320; 400; 450; 500; 560; 630; 710; 800; 900 и 1000 мм.

Допускается изменение коэффициента h 1 , но не более чем на два шага по группе классификации в большую или меньшую сторону (табл. 3.7) с соответствующей компенсацией путем изменения величины Z р (табл. 3.6) на то число шагов в меньшую или большую сторону. Барабаны под однослойную навивку каната должны иметь нарезанные по винтовой линии канавки (рис. 3.11). У грейферных кранов при однослойной навивке каната на барабан и у специальных кранов, при работе кото-рых возможны рывки и ослабление каната, барабаны должны снабжаться устройством (канатоукладчиком), обеспечивающим правильную укладку каната или контроль положения каната на барабане.

Гладкие барабаны применяются в случаях, когда по конструктивным причинам необходима многослойная навивка каната на барабан, а также при навивке на барабан цепи (рис. 3.12) Гладкие барабаны и барабаны с канавками, предназначенные для многослойной навивки каната, должны иметь реборды с обеих сторон барабана. Реборды барабанов для канатов должны возвышаться над верхним слоем навитого каната не менее чем на два его диаметра, а для цепей - не менее чем на ширину звена цепи.

Длина барабана, определяющая его канатоемкость, согласно должна быть такой, чтобы при низшем расположении грузозахватного органа (крюка и т. п.) на барабане оставались навитыми не менее 1,5 витка каната или цепи, не считая витков, находящихся под зажимным устройством. С учетом фланцев и витков на закрепление каната полная длина барабана при наматывании:

· на одной ветви каната

Минимальное расстояние между осью барабана и осью блоков крюковой подвески можно принять h min ≈ 3D .

Основные требования к конструктивному исполнению представлены .

Предельные нормы браковки:

· блоки - износ ручья блока 40% от первоначального радиуса ручья.

· барабаны - трещины любых размеров, износ ручья барабана по профилю более 2 мм.

Подъем и перемещение грузов в поперечном направлении осуществляется подвижной тележкой, установленной на мосту крана. Тележка состоит из сварной рамы с установленными механизмами подъема груза и механизма передвижения для перемещения ее по рельсам вдоль моста (рисунок 6).

Механизмы подъема различных видов кранов принципиально одинаковы, состоят из электродвигателя, тормоза, редуктора, барабана и полиспаста. Электродвигатель соединен с редукторами при помощи зубчатых муфт и приводных валов. Для погрузки - выгрузки железобетонных плит механизм подъема крана КМЭСТ - 10 оснащается грузозахватным органом крюком.

Рисунок 6 ­ Механизм подъема груза

Механизм подъема представляет собой лебедку, связанную со сдвоенным полиспастом, имеющим грузоподъемность, равную приблизительно 0,25 основной, и используемым для подъема малых грузов с большой скоростью.

Механизм передвижения тележки имеет два холостых и два приводных колеса, вращаемых электродвигателем через редуктор.

Кинематическая схема механизма подъема

Кинематическая схема механизма подъема с крюковой подвеской показана на рисунке 7.

Электродвигатель 1 соединен с цилиндрическим редуктором 5 при помощи муфт 2 и 4 и вала - вставки 3, полумуфта 4 со стороны редуктора выполнена с тормозным шкивом, на котором установлен колодочный тормоз. Редуктор 5 соединен с барабаном 6 при помощи муфты 2. На барабан наматывается канат полиспаста с грузозахватным приспособлением.

Рисунок 7 - Кинематическая схема механизма подъема груза:

1 - электродвигатель, 2 - муфты, 3 - вал-вставка, 4 - тормоз, 5 -редуктор, 6 - барабан.

Технические характеристики механизма подъема груза

Технические показатели механизма подъема груза в таблице 3.

Таблица 3 ­ Технические показатели механизма подъема груза

Полиспаст сдвоенный, с кратностью 2 (Z = 2; U = 2)

Канат двойной свивки типа ЛК - Р конструкции 6Ч9 (1+6+6/6) + 1 о.с. диаметром dK = 14 мм по ГОСТ 2688-80, с помощью прижимной планки двумя болтами крепится к барабану). Длина каната LK - 16,71 м.

Барабан литой из чугуна СЧ28, разборный

­ длина барабана ­ l = 1,324 м;

­ диаметр барабана по центру навиваемого каната­ Dб = 0,35 м;

­ длина нарезанной части барабана с одной стороны­lн = 0,427 м;

­ шаг нарезки ­ t = 16 мм.

Электродвигатель асинхронный с короткозамкнутым ротором общепромышленной серии MTF

­ типоразмер­4МТН 225L6 ;

­ номинальная мощность, кВт­ 55;

­ частота вращения вала, мин-1­ 960;

­ момент инерции ротора, кгм2 ­1,02;

­ масса, кг ­ 500.

Редуктор горизонтальный двухступенчатый цилиндрический Ц2 ­ 400

­ передаточное число­ 12,41;

­ режим работы, ПВ % ­25;

­ частота вращения быстроходного вала, мин-1 ­1500;

­ мощность на быстроходном валу, кВт ­ 81;

­ диаметр проточки под подшипники выходного конца вала, выполненного в виде зубчатой полумуфты, мм ­110

Муфты с тормозным шкивом №2

­ передаваемый крутящий момент, Нм­ 1000

­ диаметр тормозного шкива, мм­ 300

­ ширина тормозного шкива, мм ­ 150

­ момент инерции муфты, кгм2 ­ 1,5

­ типоразмер ­ТКГ - 300

­ номинальный тормозной момент, Нм ­ 800

­ расчетный тормозной момент, Нм­740

­ диаметр тормозного шкива, мм­300

­ ширина тормозной колодки, мм ­140

­ масса, кг ­ 80

Траверса

Для выполнения различных технологических операций мостовые специальных краны оснащают траверсами - специальными грузозахватными приспособлениями для работы с различными типами грузов. Траверса представляет собой съёмную, как правило, балочную пространственную конструкцию, которая укомплектована специализированными захватывающими устройствами.

В зависимости от условий эксплуатации и характеристики перемещаемого груза траверсы подразделяют на линейные, пространственные, модульные, механические и специальные, к которым относятся магнитные, электромагнитные, фрикционные и вакуумные траверсы с соответствующим типом захватов. Применение захватов различных типов позволяет работать с металлопрокатом, слябами, трубами, длинномерными грузами и контейнерами.

Для чередования перемещения грузов различных типов мостовой кран может быть укомплектован дополнительными сменными траверсами нужной длины, оснащёнными необходимыми грузозахватными органами: магнитами, клещами, управляемыми лапами для подхвата. Траверса с тележкой крана соединена с помощью жесткого подвеса.

Траверсы представляют собой коробчатые балки постоянного, а при большой длине - переменного сечения.

Траверса крепится к мостовому крану либо за центральную часть, либо за концевые продольные или поперечные элементы, при этом сама траверса располагается вдоль или поперёк моста крана. При жёстком подвесе крана КМЭСТ-10 траверса снабжается дополнительными штангами с направляющими, поэтому колебания, возникающие при движении вдоль подкрановых путей минимальны, и определяются парциальными колебаниями шахты и колонны с грузом относительно продольной оси моста. Жёсткий подвес траверсы за счёт большей скорости движения позволяет обеспечить больший грузопоток, поскольку снижается время позиционирования захвата и зацепления груза. Мостовые краны с жёстким подвесом траверсы широко применяют в металлургии, при мартеновском, прокатном и кузнечно-прессовом производстве

Использование траверсы позволяет избежать повреждения груза при транспортировке, а также кантовать груз в точках на разных плоскостях, уменьшить высоту подъёма крюка, транспортировать длинномерные грузы без воздействия сжимающих и изгибающих нагрузок, автоматизировать процесс строповки груза.

Управление механизмами крана осуществляется из кабины, подшенной к мосту крана на стороне, противоположной расположению главных троллеев, для обслуживания которых используются люльки-кабины.

В механизме подъема используют цилиндрические барабаны, которые имеют правое и левое направления нарезки, шаг не менее 1,1 диаметра каната. Канат, который наматывается на барабан, укладывается в канавках, глубина которых не меньше 0,5 dK. Оптимальный радиус канавки – 0,53 dj. Канат образует витки, которые находятся друг от друга на определенном расстоянии.

Применяя барабаны с канавками, можно обеспечить правильную укладку каната и снизить контактное напряжение между ним и барабаном, а происходит это за счет увеличения площади контакта. Следовательно, повышается срок эксплуатации каната. Витки каната, который намотан на барабан, одинакового диаметра.

При постоянной угловой скорости барабана можно получить стабильную скорость навивки.

Схема устройства литейного барабана

Схема устройства литейного барабана

Между барабаном и канавками размещена гладкая ненарезная часть. В большинстве случаев концы каната закрепляются по краям барабана. При этом спускающиеся с барабана ветви каната подводятся к наружной стороне подвески, а при наматывании каната на барабан он навивается от краев к середине.

Во вращение барабан приводят:

  • в механизме подъема средней и малой грузоподъемности — встроенная зубчатая форма;
  • в механизмах подъема большой грузоподъемности — зубчатое колесо открытой зубчатой передачи.

В первом случае все выполняется так: подшипник устанавливают в корпусе, который закрепляется на раме тележки. Подшипник цапфы находится внутри полости, которая выполнена на окончании тихоходного вала редуктора.

Зубчатый венец, являющий собой одно целое с валом редуктора, и диск барабана, у которого есть внутренние зубцы, образуют зубчатую муфту.


Крановый барабан в сборе со ступицей и опорой подшипника

Соединяется диск с барабаном болтами. В данном соединении подшипник цапф служит сферической опорой, так как во время вращения барабана оба кольца вращаются с равной скоростью. Муфта дает долговечность и повышенную надежность.

Также втулка может состоять из втулки, которая устанавливается на конце выходного вала редуктора, двух колец, соединенных болтами и фланца, прикрепленного к диску барабана. Рабочие площади фланца и втулки выполняются в виде гнезд, в них установлены бочкообразные ролики.

При соединении зубчатого колеса с диском барабана крутящий момент передается через запрессованные втулки, а барабан с колесом скрепляются болтами и гайками.Рассчитывая втулки на смятие и на срез, их число должно равняться 0,75 от общего числа втулок.

Важно: накладок не должно быть меньше двух!

Канаты могут крепиться:

  1. на гладкой части;
  2. на углубленной части;
  3. на нарезанной части.

Расчет диаметра болтов для укрепления накладок происходит на основе того, что на барабан при нижнем крайнем положении подвески соответственно Правилам Госгортех надзор должно оставаться не меньше полутора канатных витков, которые называются разгружающими.


Схема устройства барабана с открытой зубчатой передачей

При сдвоенном полиспасте общая длина барабана определяется как сумма двух длин нарезных рабочих участков, одного среднего гладкого участка, двух участков для размещения разгружающих витков, и двух участков для витков, которые служат для укрепления конца каната накладками.

Во время натяжения каната его витки создают сжимающую нагрузку похожую на внешнее распределенное радиальное давление, проложенное к поверхности барабана. По мере того, как удаляются места, ветви каната сбегают с барабана, давление уменьшается, потому что по причине сжатия цилиндрической оболочки барабана под некогда навитыми витками усилия в будущих витках уменьшаются. Помимо этого, барабан подвергается изгибу и кручению.

Часть информации для статьи была позаимоствована с сайта http://stroy-technics.ru

К деталям узла барабана, подлежащим расчету, относятся: барабан, ось барабана, подшипники оси, крепление конца каната к барабану.

Прочностным расчета барабана является расчет его стенки на сжатие. Для группы режима работы принимаем материал барабана сталь 35Л с [ сж ]= 137 МПа , барабан выполнен литым

Толщина стенки литого барабана

0,01 · Дн + 0,003 = 0,01 · 400 + 0,003 = 0,007 м

По условиям технологиям изготовления литых барабанов? 10 15 мм. С учетом изнашивания стенки барабана примем = 15 мм = 0,015 м

Проверяем выбранную стенку барабана на сжатие по формуле

Уточняем выбранное значение толщины стенки барабана по формуле

где - коэффициент, учитывающий влияние деформаций стенки барабана и каната, определяется по зависимости

где Ек - модуль упругости каната. Для шестипрядных канатов с органическим сердечником Ек = 88260 МПа; Fк - площадь сечения всех проволок каната; Еб - модуль упругости стенки барабана, для литых стальных барабанов Еб = 186300 МПа, по зависимости 0,0062 м при отношении длины барабана к его диаметру допускаемое напряжение в формуле (46) следует уменьшить на с% при навивке на барабан двух концов каната, причем для величина с = 5%. Тогда

[ сж ] = 0,95 · 137 = 130,15 МПа

1,07 · 0,86452 · = 0,0058 м. Следовательно, принятое значение = 0,015 м удовлетворяет условиям прочности.

При отношении = 2,05 < 3 4 расчет стенки барабана на изгиб и кручение не выполняется.

Отношение = 2,05 < = 6,5 , поэтому расчет цилиндрической стенки барабана на устойчивость также можно не выполнять.

В качестве прижимного устройства каната на барабане используется напряжение планки с полукруглыми канавками. Согласно правилам Госгортехнадзора число установленных одноболтовых планок должно быть не менее двух, которые устанавливают с шагом 60 0 . Суммарное усилие растяжение болтов, прижимающих канат к барабану.

где f = 0,1 0,12 - коэффициент трения между конатом и барабаном,

Угол наклона боковой грани канавки. = 40 0 ;

Угол обхвата каната неприкосновенными витками, = (1,5 2)· 2П = (3 4) · П

Необходимое число болтов

где k ? 1,5 - коэффициент запаса надежности крепления каната к барабану,

f 1 = - приведенный коэффициент трения между канатами и планкой;

f 1 = = 0,155; l - расстояние от дна каната на барабане до верхней плоскости прижимной планки, конструктивно примем l = 0,025 м.

В качестве материала болта принята сталь ВСтЗсп с тех = 230 МПа. Допускаемое напряжение растяжения [ р ] = = = 92 МПа; d 1 - средний диаметр резьбы болта, для каната диаметром d к = 13 мм принимаем болт М12, d 1 = 0,0105 м

Принимаем z = 8, четыре двухболтовые в планки.

Ось барабана испытывает напряжение изгиба от действия усилий двух ветвей каната при сдвоенном полиспасте, собственным весом барабана пренебрегаем. Расчетная схема оси барабана механизма подъема представлена на рисунке 8.

Нагрузка на ступицы барабана (при пренебрежении его весом)

где l н - длина нарезной части барабана, l н = 303,22 мм; l гл - длина гладкой средней части, l гл = 150 мм (см. рисунок)

Расстояние от ступиц барабана до опор оси предварительно принимаем : l 1 = 120 мм, l 2 = 200 мм, расчетную длину оси l = L б + 150 200 мм = 820 + 150 = 970 мм.

Расчет оси барабана сводится к определению диаметров цапф d ш и ступицы d с из условия работы оси на изгиб в симметричным цикле :

Где Ми - изгибающий момент в расчетном сечении,

W - момент сопротивления расчетного сечения при изгибе,

[ - 1 ] - допускаемое напряжение при симметричном цикле, определяется по упрощенной формуле:

Рисунок 8 - Расчетная схема оси барабана механизма подъема груза.

где к 0 - коэффициент учитывающий конструкцию детали, для валов и осей, цапф к 0 = 2 2,8; - 1 - предел выносливости,

[n] - допускаемый коэффициент запаса прочности, для группы режима работы 5М[n] = 1,7. Материал оси - сталь 45, тех = 598 МПа, -1 = 257 МПа

Нагрузки на ступицы барабана по формуле (50)

Находим реакции в опорах оси барабана: ? М 2 = 0

R1 · l = P1(l - l1) + P2 · l2

R 2 = P 1 + P 2 - R 1 = 14721,8 + 10050,93 - 14972,903 = 9799,827 Н

Изгибающий момент под левой ступицей:

М 1 = R 1 · l 1 = 14972,903 · 0,12 = 1796,75 Н · м

Изгибающий момент под правой ступицей:

М 2 = R 2 · l 2 = 9799,827 · 0,2 = 1959,965 Н · м

Находим диаметр оси под правой ступицей, где действуют наибольший изгибающий момент М 2:

Принимаем d С = 0,07 м

Принимаем остальные диаметры участков оси барабана согласно рисунку 9.

Рисунок 9 - Эскиз оси барабана.

Из в качестве подшипников опор выбраны радиальные двухрядовые шарикоподшипники № 1610 ГОСТ5720 - 75 с внутренним диаметром 50 мм, наружным 110 мм, шириной 40 мм, динамическая грузоподъемность с = 63,7 кН, статическая с 0 = 23,6 кН.

Проверяем выбранные подшипники по . Требуемая динамическая грузоподъемность

Стр = F п · (53)

где F п - динамическая проведенная нагрузка, L - номинальная долговечность, млн. циклов, 3 - показатель степени кривой усталости Велера для шарикоподшипников.

Номинальная долговечность определяется по формуле

где n - частота вращения колца подшипника при установившемся движении, об/мин;

Т- требуемая долговечность подшипника, ч. Для группы режима работы 5М величина Т = 5000ч.

F п = F экв · r б · r темп (55)

где F экв - эквивалентная нагрузка; к б - коэффициент безопасности, к б = 1,2; к темп - температурный коэффициент, к темп = 1,05 (для 125 0 с)

Эквивалентная нагрузка определяется с учетом фактического или усредненного графика работы механизма (см. рисунок) в зависимости от группы режима работы:

где F 1 , F 2 …. F i - постоянные приведенные нагрузки на подшипник при различной массе транспортируемого груза, действующие в течение времени

t 1, t 2 , …. t i за срок службы, при соответствии частоте вращения n 1, n 2 ……n i ; Т - общий расчетный срок службы подшипника, ч;

n - частота вращения детали при установившемся режиме для движения, длящегося наиболее долго.

F п = 11126 · 1,2 · 1,05 = 14018,76 Н

С тр = 14018,76 ·

следовательно, выбранный подшипник оси барабана подходит.

Выполняем уточненный расчет оси барабана в опасных сечениях 1 - 1 и 2 - 2 (см. рисунок), а также в сечении 3 - 3.

Подбор подшипников для вала барабана

Исходя из схем полиспастов с одинарным барабаном, счетные схемы для определения радиальной нагрузки на барабан будет следующая:

Рисунок 10. Схема нагрузки на барабан

Величина реакции, где сила натяжения каната.

Коэффициент безопасности.

Для барабана выбираем радиальный шариковый однорядный подшипник 116, особо легкая серия. Расчетная долговечность равна:

Полученная долговечность достаточная для крана.

Проверка работы механизма подъема груза крана в режиме неустановившегося движения

Время пуска при подъеме крана определяется по формуле:

Момент инерции двигателя,

  • - для двигателей типа MTKF,
  • - средний пусковой момент

Вращающий момент на входе редуктора

Частота вращения двигателя

Получаем

Для обеспечения времени пуска в интервале сек применяется двигатель с фазным ротором типа MTF 411-6, где время пуска регулируется работой реостатного контроллера.

Компоновка механизма подъема груза

Механизм подъема груза состоит из редуктора 1, быстроходный вал которого соединен с электродвигателем 6 при помощи втулочно-пальцевой муфты с тормозным шкивом. На этом валу стоит колодочный с электродвигателем тормоз 4. барабан 2 сдвоенный, который обеспечивает симметрию приложения нагрузки (усилие в канате), нагрузка при подъеме груза, на подшипниках не изменяется.

Рисунок 11. Механизм подъема груза крана

Ось барабана соединяется с тихоходным валом редуктора при помощи зубчатой муфты, обеспечивающей компактное соединение валов, а вторым концом ось барабана опирается не подшипниковый узел 3.

Все узлы и механизм установлены на сварной раме 5 из швеллеров.