Прочностные расчеты механизма. Механизмы подъема груза кранов Принцип работы механизма подъема груза

В механизме подъема используют цилиндрические барабаны, которые имеют правое и левое направления нарезки, шаг не менее 1,1 диаметра каната. Канат, который наматывается на барабан, укладывается в канавках, глубина которых не меньше 0,5 dK. Оптимальный радиус канавки – 0,53 dj. Канат образует витки, которые находятся друг от друга на определенном расстоянии.

Применяя барабаны с канавками, можно обеспечить правильную укладку каната и снизить контактное напряжение между ним и барабаном, а происходит это за счет увеличения площади контакта. Следовательно, повышается срок эксплуатации каната. Витки каната, который намотан на барабан, одинакового диаметра.

При постоянной угловой скорости барабана можно получить стабильную скорость навивки.

Схема устройства литейного барабана

Схема устройства литейного барабана

Между барабаном и канавками размещена гладкая ненарезная часть. В большинстве случаев концы каната закрепляются по краям барабана. При этом спускающиеся с барабана ветви каната подводятся к наружной стороне подвески, а при наматывании каната на барабан он навивается от краев к середине.

Во вращение барабан приводят:

  • в механизме подъема средней и малой грузоподъемности — встроенная зубчатая форма;
  • в механизмах подъема большой грузоподъемности — зубчатое колесо открытой зубчатой передачи.

В первом случае все выполняется так: подшипник устанавливают в корпусе, который закрепляется на раме тележки. Подшипник цапфы находится внутри полости, которая выполнена на окончании тихоходного вала редуктора.

Зубчатый венец, являющий собой одно целое с валом редуктора, и диск барабана, у которого есть внутренние зубцы, образуют зубчатую муфту.


Крановый барабан в сборе со ступицей и опорой подшипника

Соединяется диск с барабаном болтами. В данном соединении подшипник цапф служит сферической опорой, так как во время вращения барабана оба кольца вращаются с равной скоростью. Муфта дает долговечность и повышенную надежность.

Также втулка может состоять из втулки, которая устанавливается на конце выходного вала редуктора, двух колец, соединенных болтами и фланца, прикрепленного к диску барабана. Рабочие площади фланца и втулки выполняются в виде гнезд, в них установлены бочкообразные ролики.

При соединении зубчатого колеса с диском барабана крутящий момент передается через запрессованные втулки, а барабан с колесом скрепляются болтами и гайками.Рассчитывая втулки на смятие и на срез, их число должно равняться 0,75 от общего числа втулок.

Важно: накладок не должно быть меньше двух!

Канаты могут крепиться:

  1. на гладкой части;
  2. на углубленной части;
  3. на нарезанной части.

Расчет диаметра болтов для укрепления накладок происходит на основе того, что на барабан при нижнем крайнем положении подвески соответственно Правилам Госгортех надзор должно оставаться не меньше полутора канатных витков, которые называются разгружающими.


Схема устройства барабана с открытой зубчатой передачей

При сдвоенном полиспасте общая длина барабана определяется как сумма двух длин нарезных рабочих участков, одного среднего гладкого участка, двух участков для размещения разгружающих витков, и двух участков для витков, которые служат для укрепления конца каната накладками.

Во время натяжения каната его витки создают сжимающую нагрузку похожую на внешнее распределенное радиальное давление, проложенное к поверхности барабана. По мере того, как удаляются места, ветви каната сбегают с барабана, давление уменьшается, потому что по причине сжатия цилиндрической оболочки барабана под некогда навитыми витками усилия в будущих витках уменьшаются. Помимо этого, барабан подвергается изгибу и кручению.

Часть информации для статьи была позаимоствована с сайта http://stroy-technics.ru

К деталям узла барабана, подлежащим расчету, относятся: барабан, ось барабана, подшипники оси, крепление конца каната к барабану.

Прочностным расчета барабана является расчет его стенки на сжатие. Для группы режима работы принимаем материал барабана сталь 35Л с [ сж ]= 137 МПа , барабан выполнен литым

Толщина стенки литого барабана

0,01 · Дн + 0,003 = 0,01 · 400 + 0,003 = 0,007 м

По условиям технологиям изготовления литых барабанов? 10 15 мм. С учетом изнашивания стенки барабана примем = 15 мм = 0,015 м

Проверяем выбранную стенку барабана на сжатие по формуле

Уточняем выбранное значение толщины стенки барабана по формуле

где - коэффициент, учитывающий влияние деформаций стенки барабана и каната, определяется по зависимости

где Ек - модуль упругости каната. Для шестипрядных канатов с органическим сердечником Ек = 88260 МПа; Fк - площадь сечения всех проволок каната; Еб - модуль упругости стенки барабана, для литых стальных барабанов Еб = 186300 МПа, по зависимости 0,0062 м при отношении длины барабана к его диаметру допускаемое напряжение в формуле (46) следует уменьшить на с% при навивке на барабан двух концов каната, причем для величина с = 5%. Тогда

[ сж ] = 0,95 · 137 = 130,15 МПа

1,07 · 0,86452 · = 0,0058 м. Следовательно, принятое значение = 0,015 м удовлетворяет условиям прочности.

При отношении = 2,05 < 3 4 расчет стенки барабана на изгиб и кручение не выполняется.

Отношение = 2,05 < = 6,5 , поэтому расчет цилиндрической стенки барабана на устойчивость также можно не выполнять.

В качестве прижимного устройства каната на барабане используется напряжение планки с полукруглыми канавками. Согласно правилам Госгортехнадзора число установленных одноболтовых планок должно быть не менее двух, которые устанавливают с шагом 60 0 . Суммарное усилие растяжение болтов, прижимающих канат к барабану.

где f = 0,1 0,12 - коэффициент трения между конатом и барабаном,

Угол наклона боковой грани канавки. = 40 0 ;

Угол обхвата каната неприкосновенными витками, = (1,5 2)· 2П = (3 4) · П

Необходимое число болтов

где k ? 1,5 - коэффициент запаса надежности крепления каната к барабану,

f 1 = - приведенный коэффициент трения между канатами и планкой;

f 1 = = 0,155; l - расстояние от дна каната на барабане до верхней плоскости прижимной планки, конструктивно примем l = 0,025 м.

В качестве материала болта принята сталь ВСтЗсп с тех = 230 МПа. Допускаемое напряжение растяжения [ р ] = = = 92 МПа; d 1 - средний диаметр резьбы болта, для каната диаметром d к = 13 мм принимаем болт М12, d 1 = 0,0105 м

Принимаем z = 8, четыре двухболтовые в планки.

Ось барабана испытывает напряжение изгиба от действия усилий двух ветвей каната при сдвоенном полиспасте, собственным весом барабана пренебрегаем. Расчетная схема оси барабана механизма подъема представлена на рисунке 8.

Нагрузка на ступицы барабана (при пренебрежении его весом)

где l н - длина нарезной части барабана, l н = 303,22 мм; l гл - длина гладкой средней части, l гл = 150 мм (см. рисунок)

Расстояние от ступиц барабана до опор оси предварительно принимаем : l 1 = 120 мм, l 2 = 200 мм, расчетную длину оси l = L б + 150 200 мм = 820 + 150 = 970 мм.

Расчет оси барабана сводится к определению диаметров цапф d ш и ступицы d с из условия работы оси на изгиб в симметричным цикле :

Где Ми - изгибающий момент в расчетном сечении,

W - момент сопротивления расчетного сечения при изгибе,

[ - 1 ] - допускаемое напряжение при симметричном цикле, определяется по упрощенной формуле:

Рисунок 8 - Расчетная схема оси барабана механизма подъема груза.

где к 0 - коэффициент учитывающий конструкцию детали, для валов и осей, цапф к 0 = 2 2,8; - 1 - предел выносливости,

[n] - допускаемый коэффициент запаса прочности, для группы режима работы 5М[n] = 1,7. Материал оси - сталь 45, тех = 598 МПа, -1 = 257 МПа

Нагрузки на ступицы барабана по формуле (50)

Находим реакции в опорах оси барабана: ? М 2 = 0

R1 · l = P1(l - l1) + P2 · l2

R 2 = P 1 + P 2 - R 1 = 14721,8 + 10050,93 - 14972,903 = 9799,827 Н

Изгибающий момент под левой ступицей:

М 1 = R 1 · l 1 = 14972,903 · 0,12 = 1796,75 Н · м

Изгибающий момент под правой ступицей:

М 2 = R 2 · l 2 = 9799,827 · 0,2 = 1959,965 Н · м

Находим диаметр оси под правой ступицей, где действуют наибольший изгибающий момент М 2:

Принимаем d С = 0,07 м

Принимаем остальные диаметры участков оси барабана согласно рисунку 9.

Рисунок 9 - Эскиз оси барабана.

Из в качестве подшипников опор выбраны радиальные двухрядовые шарикоподшипники № 1610 ГОСТ5720 - 75 с внутренним диаметром 50 мм, наружным 110 мм, шириной 40 мм, динамическая грузоподъемность с = 63,7 кН, статическая с 0 = 23,6 кН.

Проверяем выбранные подшипники по . Требуемая динамическая грузоподъемность

Стр = F п · (53)

где F п - динамическая проведенная нагрузка, L - номинальная долговечность, млн. циклов, 3 - показатель степени кривой усталости Велера для шарикоподшипников.

Номинальная долговечность определяется по формуле

где n - частота вращения колца подшипника при установившемся движении, об/мин;

Т- требуемая долговечность подшипника, ч. Для группы режима работы 5М величина Т = 5000ч.

F п = F экв · r б · r темп (55)

где F экв - эквивалентная нагрузка; к б - коэффициент безопасности, к б = 1,2; к темп - температурный коэффициент, к темп = 1,05 (для 125 0 с)

Эквивалентная нагрузка определяется с учетом фактического или усредненного графика работы механизма (см. рисунок) в зависимости от группы режима работы:

где F 1 , F 2 …. F i - постоянные приведенные нагрузки на подшипник при различной массе транспортируемого груза, действующие в течение времени

t 1, t 2 , …. t i за срок службы, при соответствии частоте вращения n 1, n 2 ……n i ; Т - общий расчетный срок службы подшипника, ч;

n - частота вращения детали при установившемся режиме для движения, длящегося наиболее долго.

F п = 11126 · 1,2 · 1,05 = 14018,76 Н

С тр = 14018,76 ·

следовательно, выбранный подшипник оси барабана подходит.

Выполняем уточненный расчет оси барабана в опасных сечениях 1 - 1 и 2 - 2 (см. рисунок), а также в сечении 3 - 3.

Виды и сроки проведения технических освидетельствований крана.

Техническое освидетельствование проводится с целью установить, что грузоподъемная машина находится в исправном состоянии, обеспечивающем ее безопасную эксплуатацию. Кроме того, при техническом освидетельствовании проверяется правильность установки грузоподъемной машины и соблюдение регламентированных правилами габаритов. Различают полное и частичное техническое освидетельствование.

Полное техническое освидетельствование грузоподъемных машин складывается из осмотра их состояния, статического и динамического испытаний под нагрузкой. При частичном техническом освидетельствовании производится только осмотр грузоподъемной машины без испытания ее грузом.

Полному техническому освидетельствованию грузоподъемные машины должны подвергаться перед вводом в работу (первичное техническое освидетельствование) и периодически не реже одного раза в три года. Редко используемые краны (краны, обслуживающие машинные залы электрических и насосных станций, компрессорные установки и другие грузоподъемные машины, используемые только при ремонте оборудования) должны подвергаться полному периодическому техническому освидетельствованию не реже чем через каждые пять лет. Отнесение кранов, зарегистрированных в местных органах технадзора, к категории редко используемых производится этими органами, а остальных кранов -инженерно-техническим работником по надзору за грузоподъемными машинами на предприятии.

Частичное техническое освидетельствование всех грузоподъемных машин должно производиться не реже одного раза в 12 мес.

Полное первичное техническое освидетельствование стреловых самоходных (автомобильных, железнодорожных, гусеничных, пневмоколесных кранов, а также кранов-экскаваторов) и прицепных кранов, а также грузоподъемных машин, которые выпускаются с завода и перевозятся на место эксплуатации в собранном виде (например, электрические и ручные тали, лебедки), проводится отделом технического контроля завода-изготовителя перед отправкой их владельцу.

Полное первичное техническое освидетельствование всех остальных кранов (мостовых, башенных, портальных и др.) проводится после их монтажа на месте эксплуатации администрацией предприятия (инженерно-техническим работником по надзору в присутствии лица, ответственного за исправное состояние грузоподъемных машин на данном предприятии). Периодическое техническое освидетельствование (полное и частичное) кранов всех типов и других грузоподъемных машин, а также внеочередные технические освидетельствования проводятся администрацией предприятия - владельца машин.



Назначение и разновидности механизма подъема

Механизм подъема предназначен для подъема и опускания груза на необходимую высоту с заданной скоростью и удержания груза на любой, требуемой условиями технологического процесса, высоте.

Подъемный механизм может быть самостоятельным (тельфер, таль) или входить в состав другой перегрузочной установки, например в состав крана.

Механизм подъема включает в себя двигатель, передаточный механизм (редуктор или редуктор и открытую передачу), тормоз, грозовой барабан, блоки, тяговый орган (чаще всего стальной канат) и грузозахватное устройство (крюк, грузовая подвеска, грейфер и т.п.).

Входящие в состав кранов механизмы подъема грузов (грузовые лебедки) в зависимости от рода перегружаемого груза подразделяются на грейферные и крюковые лебедки.

Крюковые подъемные лебедки обычно имеют один электродвигатель, один или два грузовых барабана. При этом барабаны могут вращаться только одновременно и без изменения направления вращения относительно друг друга.

В зависимости от количества этих конструктивных элементов крюковые лебедки называются одномоторными однобарабанными или одномоторными двухбарабанными.

Конструктивное исполнение крюковых лебедок может быть самым различным в зависимости от количества барабанов и передаточных устройств (рис. 1. а, б, в).

Рис.6. Схемы одномоторных крюковых лебедок:

1 - электродвигатель; 2 - тормоз: 3 - редуктор: 4 - барабан: 5 – открытая передача.

Грейдерные (двухбарабанные) лебедки различают одномоторные и двухмоторные, позволяющие получить различные сочетания вращения барабанов, что необходимо для обеспечения работы грейфера. В грейферных лебедках кранов один барабан является замыкающим, а второй поддерживающим, аналогично и называются лебедки - одна замыкающая, а вторая - поддерживающая.

В процессе работы грейферного крана возможны следующие сочетания вращения барабанов:

При подъеме и опускании грейфера барабаны обеих лебедок вращаются синхронно;

При зачерпывании груза грейфером барабан замыкающей лебедки вращается в сторону подъема, барабан поддерживающей лебедки - на опускание, обеспечивая слабину каната по мере заглубления грейфера;

При раскрытии грейфера барабан замыкающей лебедки вращается на опускание, а барабан поддерживающей заторможен, иногда для более быстрого раскрытия грейфера барабаны лебедок вращают в разные стороны, т.е. замыкающий на спуск, а поддерживающий - на подъем.

Одномоторные грейферные лебедки (рис. 2) имеют один двигатель, обеспечивающий различное сочетание вращения барабанов посредством фрикционных муфт и тормозов. Двигатель жестко связан с замыкающим барабаном, поддерживающий же барабан присоединяется к двигателю посредством управляемой фрикционной или планетарной муфты.

Одномоторные лебедки менее совершенны и более сложны в управлении, в них совмещение таких операций, как подъем-опускание и раскрытие-закрытие грейфера невозможно (рис. 2.а).

Двухмоторные лебедки позволяет избежать этих недостатков, хотя они сложнее и дороже одномоторных лебедок, но повышение оперативности и производительности кранов окупает дополнительные затраты. В настоящее время двухмоторные лебедки являются основным типом грейферных лебедок кранов. Из большого разнообразия двухмоторных лебёдок наибольшее применение имеют лебедки, состоящие из двух нормальных крановых крюковых лебедок с независимыми двигателями (рис. 2. б), а также лебедки с планетарной связью между барабанами.

Главным требованием, предъявляемым к работе двухмоторных лебедок является равномерность распределения нагрузок на канаты и синхронность вращения барабанов с целью обеспечения равной скорости выборки канатов.

Механизмы подъема груза кранов


Подъем груза в кранах осуществляют различные механизмы, которые отличаются по типу привода, системе подвеса груза и конструктивному исполнению. Механизмы подъема груза могут быть с ручным, индивидуальным и групповым машинным приводом.

Рис. 62. Схема механизма подъема груза

Основными узлами канатных механизмов подъема груза являются лебедка, грузовой орган, соединенный с ней канатом, и устройства, обеспечивающие безопасную эксплуатацию механизмов. Однобарабанная крюковая лебедка (рис. 62) состоит из электродвигателя, редуктора, жестко соединенного муфтой с барабаном, тормоза, канатного полиспаста, крюковой подвески, уравнительного блока.

В механизмах подъема с индивидуальным приводом, который применяют в кранах общего назначения, барабан с редуктором соединяют с помощью зубчатой муфты. Валы двигателя и редуктора соединяют при помощи муфты МУВП. В этих механизмах тормоз обычно устанавливают на быстроходном валу, так как для остановки механизма в этом случае требуется меньший тормозной момент.

Согласно Правилам по кранам механизмы подъема груза выполняют так, чтобы опускание груза производилось только принудительно, включением двигателя.

В мостовых подвесных и опорных кранах грузоподъемностью до 5 т и в козловых кранах типа ККТ грузоподъемностью до 12,5 т в качестве механизма подъема используют электрические тали.

В кранах большей грузоподъемности лебедку механизма подъема груза устанавливают на грузовой тележке крана.

Мостовые краны грузоподъемностью свыше 15 т имеют, как правило, два механизма подъема груза: основной и вспомогательный, например грузоподъемностью 15/5 т - основной - 15 т, вспомогательный - 5 т.

Рис. 63. Лебедка механизма подъема груза с малой посадочной скоростью

Во многих случаях при монтажных, строительных и специальных работах в механизмах подъема груза необходимо изменять скорости подъема и опускания груза в зависимости от характера выполняемой работы и величины груза. Это привело к созданию многоскоростных механизмов подъема груза.

Среди механических способов регулирования скорости перемещения груза используют изменение передаточного отношения редуктора, специальные конструкции лебедок и тормозов.

Изменение скоростей переключением передач в редукторе неудобно и обеспечивает диапазон изменения скоростей не более 2. Применение электрогидравлического толкателя тормоза механизма подъема, подключенного по специальной схеме, позволяет получить посадочные скорости до 20% от номинальных. При таком способе регулирования скорости происходит интенсивное изнашивание накладок тормоза и он допустим только при кратковременной работе.

Наибольшее применение нашли специальные многоскоростные лебедки с микроприводом. Существует много различных кинематических схем многоскоростных лебедок, отличительной особенностью их является наличие двух электродвигателей и планетарных редукторов или специальных муфт.

Лебедка с малой посадочной скоростью (рис. 63) в дополнение к нормальным узлам снабжена микродвигателем, червячным редуктором, планетарной муфтой, тормозом муфты, соединенными с валом главного двигателя. Для работы микропривода тормоз замыкают, а двигатель отключен и вращается вхолостую при разомкнутом тормозе.

Микродвигатель вращает центробежную (солнечную) шестерню и водило, соединенное с валом двигателя. При передаточном числе планетарной муфты ир = 5 обеспечивается установочная скорость барабана около 1% от основной.

Подбор подшипников для вала барабана

Исходя из схем полиспастов с одинарным барабаном, счетные схемы для определения радиальной нагрузки на барабан будет следующая:

Рисунок 10. Схема нагрузки на барабан

Величина реакции, где сила натяжения каната.

Коэффициент безопасности.

Для барабана выбираем радиальный шариковый однорядный подшипник 116, особо легкая серия. Расчетная долговечность равна:

Полученная долговечность достаточная для крана.

Проверка работы механизма подъема груза крана в режиме неустановившегося движения

Время пуска при подъеме крана определяется по формуле:

Момент инерции двигателя,

  • - для двигателей типа MTKF,
  • - средний пусковой момент

Вращающий момент на входе редуктора

Частота вращения двигателя

Получаем

Для обеспечения времени пуска в интервале сек применяется двигатель с фазным ротором типа MTF 411-6, где время пуска регулируется работой реостатного контроллера.

Компоновка механизма подъема груза

Механизм подъема груза состоит из редуктора 1, быстроходный вал которого соединен с электродвигателем 6 при помощи втулочно-пальцевой муфты с тормозным шкивом. На этом валу стоит колодочный с электродвигателем тормоз 4. барабан 2 сдвоенный, который обеспечивает симметрию приложения нагрузки (усилие в канате), нагрузка при подъеме груза, на подшипниках не изменяется.

Рисунок 11. Механизм подъема груза крана

Ось барабана соединяется с тихоходным валом редуктора при помощи зубчатой муфты, обеспечивающей компактное соединение валов, а вторым концом ось барабана опирается не подшипниковый узел 3.

Все узлы и механизм установлены на сварной раме 5 из швеллеров.