Смазка крановых редукторов в зависимости от грузоподъемности и режимов работы крана. Механизмы подъема груза кранов Кинематическая схема механизма подъема

Подбор подшипников для вала барабана

Исходя из схем полиспастов с одинарным барабаном, счетные схемы для определения радиальной нагрузки на барабан будет следующая:

Рисунок 10. Схема нагрузки на барабан

Величина реакции, где сила натяжения каната.

Коэффициент безопасности.

Для барабана выбираем радиальный шариковый однорядный подшипник 116, особо легкая серия. Расчетная долговечность равна:

Полученная долговечность достаточная для крана.

Проверка работы механизма подъема груза крана в режиме неустановившегося движения

Время пуска при подъеме крана определяется по формуле:

Момент инерции двигателя,

  • - для двигателей типа MTKF,
  • - средний пусковой момент

Вращающий момент на входе редуктора

Частота вращения двигателя

Получаем

Для обеспечения времени пуска в интервале сек применяется двигатель с фазным ротором типа MTF 411-6, где время пуска регулируется работой реостатного контроллера.

Компоновка механизма подъема груза

Механизм подъема груза состоит из редуктора 1, быстроходный вал которого соединен с электродвигателем 6 при помощи втулочно-пальцевой муфты с тормозным шкивом. На этом валу стоит колодочный с электродвигателем тормоз 4. барабан 2 сдвоенный, который обеспечивает симметрию приложения нагрузки (усилие в канате), нагрузка при подъеме груза, на подшипниках не изменяется.

Рисунок 11. Механизм подъема груза крана

Ось барабана соединяется с тихоходным валом редуктора при помощи зубчатой муфты, обеспечивающей компактное соединение валов, а вторым концом ось барабана опирается не подшипниковый узел 3.

Все узлы и механизм установлены на сварной раме 5 из швеллеров.

К деталям узла барабана, подлежащим расчету, относятся: барабан, ось барабана, подшипники оси, крепление конца каната к барабану.

Прочностным расчета барабана является расчет его стенки на сжатие. Для группы режима работы принимаем материал барабана сталь 35Л с [ сж ]= 137 МПа , барабан выполнен литым

Толщина стенки литого барабана

0,01 · Дн + 0,003 = 0,01 · 400 + 0,003 = 0,007 м

По условиям технологиям изготовления литых барабанов? 10 15 мм. С учетом изнашивания стенки барабана примем = 15 мм = 0,015 м

Проверяем выбранную стенку барабана на сжатие по формуле

Уточняем выбранное значение толщины стенки барабана по формуле

где - коэффициент, учитывающий влияние деформаций стенки барабана и каната, определяется по зависимости

где Ек - модуль упругости каната. Для шестипрядных канатов с органическим сердечником Ек = 88260 МПа; Fк - площадь сечения всех проволок каната; Еб - модуль упругости стенки барабана, для литых стальных барабанов Еб = 186300 МПа, по зависимости 0,0062 м при отношении длины барабана к его диаметру допускаемое напряжение в формуле (46) следует уменьшить на с% при навивке на барабан двух концов каната, причем для величина с = 5%. Тогда

[ сж ] = 0,95 · 137 = 130,15 МПа

1,07 · 0,86452 · = 0,0058 м. Следовательно, принятое значение = 0,015 м удовлетворяет условиям прочности.

При отношении = 2,05 < 3 4 расчет стенки барабана на изгиб и кручение не выполняется.

Отношение = 2,05 < = 6,5 , поэтому расчет цилиндрической стенки барабана на устойчивость также можно не выполнять.

В качестве прижимного устройства каната на барабане используется напряжение планки с полукруглыми канавками. Согласно правилам Госгортехнадзора число установленных одноболтовых планок должно быть не менее двух, которые устанавливают с шагом 60 0 . Суммарное усилие растяжение болтов, прижимающих канат к барабану.

где f = 0,1 0,12 - коэффициент трения между конатом и барабаном,

Угол наклона боковой грани канавки. = 40 0 ;

Угол обхвата каната неприкосновенными витками, = (1,5 2)· 2П = (3 4) · П

Необходимое число болтов

где k ? 1,5 - коэффициент запаса надежности крепления каната к барабану,

f 1 = - приведенный коэффициент трения между канатами и планкой;

f 1 = = 0,155; l - расстояние от дна каната на барабане до верхней плоскости прижимной планки, конструктивно примем l = 0,025 м.

В качестве материала болта принята сталь ВСтЗсп с тех = 230 МПа. Допускаемое напряжение растяжения [ р ] = = = 92 МПа; d 1 - средний диаметр резьбы болта, для каната диаметром d к = 13 мм принимаем болт М12, d 1 = 0,0105 м

Принимаем z = 8, четыре двухболтовые в планки.

Ось барабана испытывает напряжение изгиба от действия усилий двух ветвей каната при сдвоенном полиспасте, собственным весом барабана пренебрегаем. Расчетная схема оси барабана механизма подъема представлена на рисунке 8.

Нагрузка на ступицы барабана (при пренебрежении его весом)

где l н - длина нарезной части барабана, l н = 303,22 мм; l гл - длина гладкой средней части, l гл = 150 мм (см. рисунок)

Расстояние от ступиц барабана до опор оси предварительно принимаем : l 1 = 120 мм, l 2 = 200 мм, расчетную длину оси l = L б + 150 200 мм = 820 + 150 = 970 мм.

Расчет оси барабана сводится к определению диаметров цапф d ш и ступицы d с из условия работы оси на изгиб в симметричным цикле :

Где Ми - изгибающий момент в расчетном сечении,

W - момент сопротивления расчетного сечения при изгибе,

[ - 1 ] - допускаемое напряжение при симметричном цикле, определяется по упрощенной формуле:

Рисунок 8 - Расчетная схема оси барабана механизма подъема груза.

где к 0 - коэффициент учитывающий конструкцию детали, для валов и осей, цапф к 0 = 2 2,8; - 1 - предел выносливости,

[n] - допускаемый коэффициент запаса прочности, для группы режима работы 5М[n] = 1,7. Материал оси - сталь 45, тех = 598 МПа, -1 = 257 МПа

Нагрузки на ступицы барабана по формуле (50)

Находим реакции в опорах оси барабана: ? М 2 = 0

R1 · l = P1(l - l1) + P2 · l2

R 2 = P 1 + P 2 - R 1 = 14721,8 + 10050,93 - 14972,903 = 9799,827 Н

Изгибающий момент под левой ступицей:

М 1 = R 1 · l 1 = 14972,903 · 0,12 = 1796,75 Н · м

Изгибающий момент под правой ступицей:

М 2 = R 2 · l 2 = 9799,827 · 0,2 = 1959,965 Н · м

Находим диаметр оси под правой ступицей, где действуют наибольший изгибающий момент М 2:

Принимаем d С = 0,07 м

Принимаем остальные диаметры участков оси барабана согласно рисунку 9.

Рисунок 9 - Эскиз оси барабана.

Из в качестве подшипников опор выбраны радиальные двухрядовые шарикоподшипники № 1610 ГОСТ5720 - 75 с внутренним диаметром 50 мм, наружным 110 мм, шириной 40 мм, динамическая грузоподъемность с = 63,7 кН, статическая с 0 = 23,6 кН.

Проверяем выбранные подшипники по . Требуемая динамическая грузоподъемность

Стр = F п · (53)

где F п - динамическая проведенная нагрузка, L - номинальная долговечность, млн. циклов, 3 - показатель степени кривой усталости Велера для шарикоподшипников.

Номинальная долговечность определяется по формуле

где n - частота вращения колца подшипника при установившемся движении, об/мин;

Т- требуемая долговечность подшипника, ч. Для группы режима работы 5М величина Т = 5000ч.

F п = F экв · r б · r темп (55)

где F экв - эквивалентная нагрузка; к б - коэффициент безопасности, к б = 1,2; к темп - температурный коэффициент, к темп = 1,05 (для 125 0 с)

Эквивалентная нагрузка определяется с учетом фактического или усредненного графика работы механизма (см. рисунок) в зависимости от группы режима работы:

где F 1 , F 2 …. F i - постоянные приведенные нагрузки на подшипник при различной массе транспортируемого груза, действующие в течение времени

t 1, t 2 , …. t i за срок службы, при соответствии частоте вращения n 1, n 2 ……n i ; Т - общий расчетный срок службы подшипника, ч;

n - частота вращения детали при установившемся режиме для движения, длящегося наиболее долго.

F п = 11126 · 1,2 · 1,05 = 14018,76 Н

С тр = 14018,76 ·

следовательно, выбранный подшипник оси барабана подходит.

Выполняем уточненный расчет оси барабана в опасных сечениях 1 - 1 и 2 - 2 (см. рисунок), а также в сечении 3 - 3.

Подъем и перемещение грузов в поперечном направлении осуществляется подвижной тележкой, установленной на мосту крана. Тележка состоит из сварной рамы с установленными механизмами подъема груза и механизма передвижения для перемещения ее по рельсам вдоль моста (рисунок 6).

Механизмы подъема различных видов кранов принципиально одинаковы, состоят из электродвигателя, тормоза, редуктора, барабана и полиспаста. Электродвигатель соединен с редукторами при помощи зубчатых муфт и приводных валов. Для погрузки - выгрузки железобетонных плит механизм подъема крана КМЭСТ - 10 оснащается грузозахватным органом крюком.

Рисунок 6 ­ Механизм подъема груза

Механизм подъема представляет собой лебедку, связанную со сдвоенным полиспастом, имеющим грузоподъемность, равную приблизительно 0,25 основной, и используемым для подъема малых грузов с большой скоростью.

Механизм передвижения тележки имеет два холостых и два приводных колеса, вращаемых электродвигателем через редуктор.

Кинематическая схема механизма подъема

Кинематическая схема механизма подъема с крюковой подвеской показана на рисунке 7.

Электродвигатель 1 соединен с цилиндрическим редуктором 5 при помощи муфт 2 и 4 и вала - вставки 3, полумуфта 4 со стороны редуктора выполнена с тормозным шкивом, на котором установлен колодочный тормоз. Редуктор 5 соединен с барабаном 6 при помощи муфты 2. На барабан наматывается канат полиспаста с грузозахватным приспособлением.

Рисунок 7 - Кинематическая схема механизма подъема груза:

1 - электродвигатель, 2 - муфты, 3 - вал-вставка, 4 - тормоз, 5 -редуктор, 6 - барабан.

Технические характеристики механизма подъема груза

Технические показатели механизма подъема груза в таблице 3.

Таблица 3 ­ Технические показатели механизма подъема груза

Полиспаст сдвоенный, с кратностью 2 (Z = 2; U = 2)

Канат двойной свивки типа ЛК - Р конструкции 6Ч9 (1+6+6/6) + 1 о.с. диаметром dK = 14 мм по ГОСТ 2688-80, с помощью прижимной планки двумя болтами крепится к барабану). Длина каната LK - 16,71 м.

Барабан литой из чугуна СЧ28, разборный

­ длина барабана ­ l = 1,324 м;

­ диаметр барабана по центру навиваемого каната­ Dб = 0,35 м;

­ длина нарезанной части барабана с одной стороны­lн = 0,427 м;

­ шаг нарезки ­ t = 16 мм.

Электродвигатель асинхронный с короткозамкнутым ротором общепромышленной серии MTF

­ типоразмер­4МТН 225L6 ;

­ номинальная мощность, кВт­ 55;

­ частота вращения вала, мин-1­ 960;

­ момент инерции ротора, кгм2 ­1,02;

­ масса, кг ­ 500.

Редуктор горизонтальный двухступенчатый цилиндрический Ц2 ­ 400

­ передаточное число­ 12,41;

­ режим работы, ПВ % ­25;

­ частота вращения быстроходного вала, мин-1 ­1500;

­ мощность на быстроходном валу, кВт ­ 81;

­ диаметр проточки под подшипники выходного конца вала, выполненного в виде зубчатой полумуфты, мм ­110

Муфты с тормозным шкивом №2

­ передаваемый крутящий момент, Нм­ 1000

­ диаметр тормозного шкива, мм­ 300

­ ширина тормозного шкива, мм ­ 150

­ момент инерции муфты, кгм2 ­ 1,5

­ типоразмер ­ТКГ - 300

­ номинальный тормозной момент, Нм ­ 800

­ расчетный тормозной момент, Нм­740

­ диаметр тормозного шкива, мм­300

­ ширина тормозной колодки, мм ­140

­ масса, кг ­ 80

Траверса

Для выполнения различных технологических операций мостовые специальных краны оснащают траверсами - специальными грузозахватными приспособлениями для работы с различными типами грузов. Траверса представляет собой съёмную, как правило, балочную пространственную конструкцию, которая укомплектована специализированными захватывающими устройствами.

В зависимости от условий эксплуатации и характеристики перемещаемого груза траверсы подразделяют на линейные, пространственные, модульные, механические и специальные, к которым относятся магнитные, электромагнитные, фрикционные и вакуумные траверсы с соответствующим типом захватов. Применение захватов различных типов позволяет работать с металлопрокатом, слябами, трубами, длинномерными грузами и контейнерами.

Для чередования перемещения грузов различных типов мостовой кран может быть укомплектован дополнительными сменными траверсами нужной длины, оснащёнными необходимыми грузозахватными органами: магнитами, клещами, управляемыми лапами для подхвата. Траверса с тележкой крана соединена с помощью жесткого подвеса.

Траверсы представляют собой коробчатые балки постоянного, а при большой длине - переменного сечения.

Траверса крепится к мостовому крану либо за центральную часть, либо за концевые продольные или поперечные элементы, при этом сама траверса располагается вдоль или поперёк моста крана. При жёстком подвесе крана КМЭСТ-10 траверса снабжается дополнительными штангами с направляющими, поэтому колебания, возникающие при движении вдоль подкрановых путей минимальны, и определяются парциальными колебаниями шахты и колонны с грузом относительно продольной оси моста. Жёсткий подвес траверсы за счёт большей скорости движения позволяет обеспечить больший грузопоток, поскольку снижается время позиционирования захвата и зацепления груза. Мостовые краны с жёстким подвесом траверсы широко применяют в металлургии, при мартеновском, прокатном и кузнечно-прессовом производстве

Использование траверсы позволяет избежать повреждения груза при транспортировке, а также кантовать груз в точках на разных плоскостях, уменьшить высоту подъёма крюка, транспортировать длинномерные грузы без воздействия сжимающих и изгибающих нагрузок, автоматизировать процесс строповки груза.

Управление механизмами крана осуществляется из кабины, подшенной к мосту крана на стороне, противоположной расположению главных троллеев, для обслуживания которых используются люльки-кабины.

В механизме подъема используют цилиндрические барабаны, которые имеют правое и левое направления нарезки, шаг не менее 1,1 диаметра каната. Канат, который наматывается на барабан, укладывается в канавках, глубина которых не меньше 0,5 dK. Оптимальный радиус канавки – 0,53 dj. Канат образует витки, которые находятся друг от друга на определенном расстоянии.

Применяя барабаны с канавками, можно обеспечить правильную укладку каната и снизить контактное напряжение между ним и барабаном, а происходит это за счет увеличения площади контакта. Следовательно, повышается срок эксплуатации каната. Витки каната, который намотан на барабан, одинакового диаметра.

При постоянной угловой скорости барабана можно получить стабильную скорость навивки.

Схема устройства литейного барабана

Схема устройства литейного барабана

Между барабаном и канавками размещена гладкая ненарезная часть. В большинстве случаев концы каната закрепляются по краям барабана. При этом спускающиеся с барабана ветви каната подводятся к наружной стороне подвески, а при наматывании каната на барабан он навивается от краев к середине.

Во вращение барабан приводят:

  • в механизме подъема средней и малой грузоподъемности — встроенная зубчатая форма;
  • в механизмах подъема большой грузоподъемности — зубчатое колесо открытой зубчатой передачи.

В первом случае все выполняется так: подшипник устанавливают в корпусе, который закрепляется на раме тележки. Подшипник цапфы находится внутри полости, которая выполнена на окончании тихоходного вала редуктора.

Зубчатый венец, являющий собой одно целое с валом редуктора, и диск барабана, у которого есть внутренние зубцы, образуют зубчатую муфту.


Крановый барабан в сборе со ступицей и опорой подшипника

Соединяется диск с барабаном болтами. В данном соединении подшипник цапф служит сферической опорой, так как во время вращения барабана оба кольца вращаются с равной скоростью. Муфта дает долговечность и повышенную надежность.

Также втулка может состоять из втулки, которая устанавливается на конце выходного вала редуктора, двух колец, соединенных болтами и фланца, прикрепленного к диску барабана. Рабочие площади фланца и втулки выполняются в виде гнезд, в них установлены бочкообразные ролики.

При соединении зубчатого колеса с диском барабана крутящий момент передается через запрессованные втулки, а барабан с колесом скрепляются болтами и гайками.Рассчитывая втулки на смятие и на срез, их число должно равняться 0,75 от общего числа втулок.

Важно: накладок не должно быть меньше двух!

Канаты могут крепиться:

  1. на гладкой части;
  2. на углубленной части;
  3. на нарезанной части.

Расчет диаметра болтов для укрепления накладок происходит на основе того, что на барабан при нижнем крайнем положении подвески соответственно Правилам Госгортех надзор должно оставаться не меньше полутора канатных витков, которые называются разгружающими.


Схема устройства барабана с открытой зубчатой передачей

При сдвоенном полиспасте общая длина барабана определяется как сумма двух длин нарезных рабочих участков, одного среднего гладкого участка, двух участков для размещения разгружающих витков, и двух участков для витков, которые служат для укрепления конца каната накладками.

Во время натяжения каната его витки создают сжимающую нагрузку похожую на внешнее распределенное радиальное давление, проложенное к поверхности барабана. По мере того, как удаляются места, ветви каната сбегают с барабана, давление уменьшается, потому что по причине сжатия цилиндрической оболочки барабана под некогда навитыми витками усилия в будущих витках уменьшаются. Помимо этого, барабан подвергается изгибу и кручению.

Часть информации для статьи была позаимоствована с сайта http://stroy-technics.ru

Министерство образования Российской Федерации

Санкт-Петербургский институт машиностроения

(ВТУЗ-ЛМЗ)

Кафедра «Теория механизмов и детали машин»

КРАН МОСТОВОЙ

МЕХАНИЗМ ПОДЪЁМА ГРУЗА

Санкт-Петербург

Механизм подъёма груза . Методические указания к курсовой работе для студентов ПИМаш смешанного и вечернего обучения всех специальностей. Изложен порядок расчета элементов механизма, методика расчета механизма подъёма, приведены справочные данные по выбору элементов механизма подъёма.

Редакция 1987г. Составитель: асс. .

Научный редактор: канд. техн. наук, доцент.

Редакция 2000г. Составитель: ст. преп. .

Научный редактор: докт. техн. наук, проф. Ю.А. Державец.

1. ОБЩИЕ УКАЗАНИЯ

Цель методических указаний - практическое усвоение курса «Подъёмно-транспортные машины» раздела: «Машины периодического действия», «Краны».

Объём курсовой работы - пояснительная записка на листах формата А4 (объёмом до 20 страниц) и чертеж узла на листе формата А2, которые выполняются в соответствии с требованиями ЕСКД. Все расчеты делаются в системе СИ.

Объект проектирования - механизм подъёма груза, барабан, подвеска.

Принципиальная схема механизма - составные части механизма, рис.1:

1 - электродвигатель;

2 - тормоз с тормозной муфтой;

4 - барабан и подвеска (на рис. не показана).

Действующие нагрузки - на рис.2 показана сила (грузоподъёмность) приложенная к крюку подвески 3.

Задание - помещено в Приложениях, приведены исходные данные для проектирования:


Грузоподъёмность ;

Скорость механизма подъёма груза ;

Высота подъёма груза ;

Режим работы механизма: Л- легкий, С - средний, Т - тяжелый, ВТ - весьма тяжелый.

Последовательность выполнения задания:

1) Выбор кратности полиспаста.

2) выбор диаметра каната.

3) Определение диаметра блока.

4) Определение размеров барабана и его частоты вращения.

5) Выбор электродвигателя.

6) Выбор редуктора.

7) Выбор тормозной муфты.

8) Выбор тормоза.

9) Проверочный расчет электродвигателя по времени пуска механизма подъема.

10) Проверочный расчет тормоза по времени торможения механизма подъёма.

ОБЩИЕ СВЕДЕНИЯ

В мостовых (козловых и др.) кранах механизм подъёма груза размещен на крановой тележке. Схема механизма подъёма кранов общего и специального назначений зависит от многих факторов: типа грузозахватного устройства, массы поднимаемого груза, высоты подъёма и т. д. Общая принципиальная схема механизма подъёма, характерная для кранов грузоподъёмностью 5...50 т, приведена на рис.1.

Рис.1. Кинематическая схема механизма подъёма груза.

Схема механизма подъёма груза позволяет производить блочную сборку узлов , с использованием стандартных элементов: электродвигателя 1, тормоза с тормозной муфтой 2, редуктора 3, барабана 4 и подвески (на схеме не показана). Такая компоновка схемы механизма подъёма груза наиболее распространена при серийном производстве, она широко применяется и является типовой для кранов малой и средней грузоподъёмности.

Кроме рассмотренной схемы, возможны другие компоновки механизма подъёма груза, такие как схемы с торсионным валом, с открытой передачей и т. д.

2. ВЫБОР КРАТНОСТИ ПОЛИСПАСТА

Для выигрыша в тяговом усилии в механизмах подъема используется п о л и с п а с т, который представляет собой систему подвижных (в крюковой подвеске) и неподвижных (обводных) блоков.

Для принятой схемы механизма подъёма следует выбирать тип полиспаста, определяемый схемой навивки каната на барабан и запрессовки каната , , .

При непосредственной навивке каната на барабан (мостовые, козловые, консольные краны) во избежание смещения груза при его подъёме-спуске и для равномерного нагружения опоры барабана применяются сдвоенные полиспасты

Рис.2. Схема сдвоенного полиспаста. 1 - барабан; 2 - уравнительный блок (обводной); 3 - подвеска; 4 - канат (гибкий тяговый орган).

При использовании сдвоенных полиспастов на барабан одновременно наматываются две ветви каната. В зависимости от грузоподъёмности крана выбирают кратность полиспаста . Повышение кратности на единицу достигается заменой уравнительного блока на противоположную сторону полиспаста; процесс можно повторять до достижения любой кратности.

Необходимая кратность полиспаста для механизма подъёма груза приведена в табл.1.

Таблица 1

КРАТНОСТЬ ПОЛИСПАСТА МЕХАНИЗМА ПОДЪЁМА ГРУЗА 0 " style="border-collapse:collapse">

Характер навивки на барабан

Тип полиспаста

Грузоподъёмность , T

Непосредственно на барабан (мостовой, козловой, консольный кран)

Сдвоенный

Через направляющий блок (стрелковые краны)

3. ВЫБОР ДИАМЕТРА КАНАТА

https://pandia.ru/text/78/240/images/image010_27.gif" width="33" height="24">


где: https://pandia.ru/text/78/240/images/image011_21.gif" width="15" height="19 src="> - запас прочности каната от режима работы (Л - 5; С - 5,5; Т и ВТ - 6);

https://pandia.ru/text/78/240/images/image013_18.gif" width="131" height="49">Наибольшее натяжение , КН, каната определяют

где: - грузоподъёмность крана, т, Приложение 1;

https://pandia.ru/text/78/240/images/image014_21.gif" width="24" height="20 src=">

Условия работы

КПД уравнительного

Кратность полиспаста

Редкая смазка

Нормальная смазка в условиях нормальных температур

Диаметр стального каната выбирают по табл.3 по условию (1). Наиболее широко применяют канаты двойной свивки маркированных групп =1600...1800 МПа. При более низких значениях маркировочных групп нерационально увеличен диаметр каната, а следовательно, барабана и блоков, а при более высоких канат имеет повышенную жесткость, что снижает срок его службы.

Таблица 3

ХАРАКТЕРИСТИКИ КАНАТОВ ДВОЙНОЙ СВИВКИ

Площадь сечения,

Масса 1000 м каната,

Разрывное усилие каната по маркировочным группам , кН

Тип ЛК-Р конструкции 6х19 1+6+6/6 + I о. с. (ГОСТ 2688-80)

Тип ТЛК-0 конструкции 6х37 1+6+15+15 + I о. с. (ГОСТ 3079-80)