Принцип работы механизма подъема груза. Схемы механизмов подъема

Цель работы: изучить различные кинематические схемы механизма подъема мостового крана.

2.1 Задание

Таблица 1.1

Исходные данные

№ варианта

Грузоподъемность, т

Высота подъема, м

Скорость подъема, м/мин

режима работы

Кратность полиспаста

Число напр. блоков

2.2 Указания к выполнению задания

Непременным и наиболее ответственным элементом любой ГПМ является механизм подъе­ма.

В зависимости от грузоподъемности и условий эксплуатации применяют механизмы подъе­ма с ручным или машинным приводом.

Машинный привод может быть индивидуальным (каж­дый механизм ПТМ имеет собственный двигатель) либо групповым (все механизмы ПТМ приводятся в действие от одного двигателя).

На рисунке 2.1показана кинематическая схема механизма подъема мостового крана. Механизм состоит из двигателя 1, соединительной муфты с тормозным шкивом 2, на которую насажен тормоз 3. муфта служит для соединения концов валов двигателя и редуктора 4. Муфта 5 соединяет между собой конец вала редуктора и барабана 6. На барабан наматывается канат 7, который огибает блок 8. Для соединения груза с мостовым краном используется крюковая подвеска.

При расчете механизма подъема решаются следующие задачи:

Определение разрывного усилия каната и выбор стандартного каната;

Выбор барабана и расчет его параметров;

Определение мощности двигателя и выбор типа двигателя;

Выбор редуктора;

Выбор соединительных муфт;

Определение потребного тормозного момента и выбор типа тормоза.

Рисунок 2.1. Кинематическая схема механизма подъема

В качестве гибкого органа для подвешивания грузов в подавляющем большинстве случаев применяется стальной проволочный канат.

В соответствии с требованиями международного стандарта ИСО 4301/1, стальные канаты подбираются по разрывному усилию :

где F 0 - разрывное усилие каната в целом Н, принимаемое по сертификату;

S - наибольшее натяжение ветви каната, определяемое при подъеме номинального груза с учетом потерь на блоках полиспаста и на обводных блоках, но без учета динамических нагрузок;

Z p - минимальный коэффициент использования каната (минимальный коэффициент запаса прочности каната), определяемый по таблице 2 и 3 .

Наибольшее натяжение ветви каната определяется по формуле:

где а - число ветвей каната, наматываемых на барабан;

η бл - КПД блока; можно принять: КПД блока, установленного на подшипниках качения 0,98; на подшипниках скольжения 0,96;

i п – кратность полиспаста;

n – число направляющих блоков.

Определив разрывное усилие и задавшись пределом прочности стальной проволоки, по справочным таблицам подбирается канат. Наибольшее распространение нашли канаты типа ЛК-О, ЛК-Р, ТЛК, ТЛК-О. Выбрав канат, устанавливают его диаметр d.

От выбора схемы установки грузового барабана в дальнейшем зависит конструкция всего узла барабана. Существует несколько схем установки барабана:

а) выходной вал редуктора соединяется с валом барабана с помощью муфты общего значения (рекомендуется жесткая компенсирующая муфта) (рисунок 2.2, а). Достоинством этой схемы являются: простота конструкции, удобство монтажа и обслуживания. Недостатки: значительные габариты; необходимость использования вала (для установки барабана), нагруженного крутящими и изгибающими моментами.

б) барабан соединяется с редуктором посредством зубчатой передачи (рисунок 2.2, б). Ведомое колесо передачи жестко крепится к фланцу барабана (разъемное или неразъемное соединение), таким образом, барабан устанавливается на оси, разгруженной от крутящих моментов, что является достоинством данной схемы. Недостаток - наличие открытой зубчатой передачи, подлежащей расчету. Данная схема применяется в том случае, если в результате расчета не удается подобрать редуктор со стандартным передаточным отношением.

в) вал барабана и выходной вал редуктора совмещены в одной конструкции (рисунок 2.2, в). Достоинства данной схемы в малых габаритах и простоте конструкции. Недостатки: наличие трехопорного вала (затруднена точная установка в опорах), необходимость вести совместный монтаж редуктора и барабана.

Рисунок 2.2. Схемы установки барабанов.

г) выходной вал редуктора соединяется с барабаном с помощью специальной зубчатой муфты, встроенной в барабан (рисунок 2.2, г). Эта схема требует применение специальных крановых редукторов, выходной вал которых, имеет зубчатый фланец. Достоинства схемы: компактность; установка барабана на оси, которая разгружена от крутящих моментов. Недостатки: затруднен доступ к зубчатой муфте, при монтаже и ремонте; необходимо обязательное соответствие размеров редуктора и барабана.

В ходе расчета определяются геометрические параметры барабана – диаметр барабана и его длина. Диаметр барабана, замеренный по центрам сечения витка каната (рисунок 3), определяется:

где h 1 – коэффициент выбора диаметра барабана, определяемый по таблице 5 .

Приняв диаметр барабана, следует найти диаметр барабана по дну канавки:

Рисунок 2.3. Параметры барабана

Полученное значение следует округлить в большую сторону до значения из нормального ряда размеров: 160, 200, 250, 320, 400, 450, 560, 630, 710, 800, 900, 1000. Затем следует уточнить значение D 1 .

Если используется схема соединения барабана с редуктором, при помощи встроенной зубчатой муфты, то минимальный диаметр барабана принимается 400 и затем уточняется при компоновке механизма.

Длина нарезного барабана определяется по формулам:

при работе с одинарным полиспастом, мм:

при работе со сдвоенным полиспастом, мм:

где L 1 - длина нарезной части барабана, определяемая по формуле, мм:

, (2.7)

где t – шаг нарезки, t ≈ (1,1….1,23)d, при этом полученная величина должна быть округлена до значения кратного 0,5;

L 2 - расстояние от торцов барабана до начала нарезки, L 2 =L 3 =(2÷3)t;

L 4 - расстояние между участками нарезки, L 4 = 120 ÷ 200 мм.

Длина гладкого барабана определяется, мм:

где n- число витков каната, уложенных по всей длине барабана;

z – число слоев навивки каната на барабан;

γ – коэффициент неравномерности укладки каната, γ = 1,05.

Число витков каната, уложенных по всей длине барабана:

Потребная мощность двигателя механизма подъема определяется по формуле, кВт:

где η – общий КПД механизма, η=η м ×η б ×η п;

η м – КПД передаточного механизма;

η б – КПД, учитывающий потери мощности на барабане;

η п – КПД полиспаста.

Для предварительных проектных расчетов можно принять КПД механизма 0,8÷0,85 или принять: η м =094÷0,96; η б =0,94÷0,96; η п =0,85÷0,9.

По полученной мощности подбирают стандартный электродвигатель типа МТ (MTF) – с фазным ротором или типа MTK(MTKF) – c короткозамкнутым ротором. В виде исключения можно рекомендовать двигатели общего назначения – типа АО.

Выбрав двигатель, выписывают из литературы , следующие параметры, необходимые для дальнейшего расчета механизма:

N дв – номинальная мощность двигателя, кВт;

n дв – частота вращения ротора двигателя, об/мин;

d дв – диаметр выходного конца ротора двигателя.

Кинематический расчет механизма заключается в определении передаточного числа механизма, по которому подбирается стандартный редуктор:

где n б – частота вращения барабана

По данному передаточному числу выбирается по литературе , стандартный редуктор. Наибольшее применение в механизмах подъема нашли двухступенчатые горизонтальные зубчатые редукторы кранового типа Ц2. При выборе редуктора должны быть проверены условия, касающиеся прочности, долговечности и кинематики редуктора:

а) выбранное передаточное число редуктора не должно отличаться от расчетного более чем на 15%;

б) частота вращения быстроходного вала редуктора должна быть не меньше частоты вращения вала двигателя.

Выбрав по каталогу редуктор, выписывают необходимые для расчета параметры:

U p – действительное передаточное число;

d 1 ,d 2 – диаметры выходных концов быстроходного и тихоходного валов редуктора.

С помощью муфт соединяются вал двигателя с входным валом редуктора, а так же (в некоторых схемах установки барабана) выходной вал редуктора с валом барабана. Одна из полумуфт приводной муфты обычно служит одновременно тормозным шкивом для тормоза, установленного здесь же, на приводном валу. Эта конструкция называется муфтой с тормозным шкивом.

Специальные муфты с тормозным шкивом выполняются в двух вариантах – на базе упругой втулочно-пальцевой муфты (МУВП) и на базе зубчатой муфты (МЗ) , .

Зубчатая муфта в некоторых случаях может быть выполнена с промежуточным валом-вставкой, и тогда она включает в себя: муфту с тормозным шкивом, обычную зубчатую муфту и соединяющий их вал вставку, длина которого устанавливается конструктивно. Такое решение применяют тогда, когда конструктивно невозможно установить редуктор рядом с двигателем или когда стоит вопрос о более равномерном распределении весовых нагрузок от механизмов на ходовые колеса.

В качестве муфты, установленной на валу барабана, используется стандартная (жесткая компенсирующая) муфта.

Выбор муфт производится по диаметрам соединяемых валов, затем подобранная муфта проверяется по крутящему моменту.

Крутящий момент на валу двигателя, Н∙м:

Крутящий момент на валу барабана Н∙м:

где η Б – КПД барабана, η Б = 0,99;

η р – КПД редуктора, η р = 0,92.

Определяется расчетное значение момента, Н∙м:

где к 1 – коэффициент учитывающий режим работы (легкий режим – 1,1; средний – 1,2; тяжелый – 1,3).

Выбранная муфта должна удовлетворять условию: Т р ≤ Т табл (Т табл - предельно допустимое значение крутящего момента, указанного в справочниках , ).

В большинстве случаев тормоз в механизмах подъема устанавливают на приводном валу, причем тормозной шкив, являющийся одной из полумуфт приводной муфты, должен быть обращен в сторону редуктора. Наибольшее распространение нашли колодочные тормоза: двухколодочные с электромагнитом переменного тока типа ТКТ и с электрогидротолкателями типа ТТ и ТКГ. Тормоза ТКТ конструктивно проще, поэтому их применение предпочтительнее при диаметрах тормозных шкивов до 300 мм и тормозных моментах до 500 Нм. Достоинствами тормозов ТТ и ТКГ являются плавность срабатывания и возможность осуществления больших тормозных моментов. При использовании постоянного тока применяются тормоза типа ТКП.

Определяется тормозной момент, Н∙м:

Выбор тормоза осуществляется по тормозному моменту:

где β – коэффициент запаса торможения (легкий режим – 1,5; средний режим – 1,75; тяжелый режим – 2).

По полученной величине тормозного момента и режима работы подбирается стандартный тормоз , , выбрав тормоз, необходимо проверить, чтобы диаметр тормозного шкива тормоза совпал с диаметром тормозной муфты.

Грузовой барабан – один из важнейших узлов подъемного крана. Предназначен он для намотки и равномерного распределения каната, который отвечает за подъем или опускание груза. Конструкция грузового барабана тщательно продумана, ведь даже небольшое нарушение может привести к сильному изгибу каната и перебоям в работе самого крана. Чтобы понять как этого избежать, следует тщательно разобраться с устройством барабана.


Чертеж устройства грузового барабана

Устройство грузового барабана

  • Цельная труба главная деталь барабана. Именно на нее в процессе работы крана наматывается канат. Труба может иметь насечки на своей внешней поверхности, а может быть совершенно гладкой. Ниже мы рассмотрим этот пункт более подробно.
  • Фланцы – приварены к торцам трубы. А к ободу фланцев, в свою очередь, присоединены ступицы.
    Следует отметить, что запрессовка центрального вала происходит с помощью внутренней поверхности трубы, которая имеет цилиндрическую форму.
  • Зубчатое колесо – располагается на центральном валу. Его главная задача – соединение барабана с приводом редуктора, чтобы конструкция начала двигаться.

Наматывание троса грузового барабана

Этот процесс стоит рассмотреть отдельно, так как от него напрямую зависит качество работы, а также специфика устройства грузового барабана. Для того, чтобы во время наматывания канат укладывался на барабан равномерно, на внешней стороне трубы предусмотрены специальные канавки. Они исключают спутывание каната.

Диаметр канавок – ненамного превышает диаметр самого троса, что позволяет канату легко размещаться и не контактировать с боковинками барабана. При этом на одной части механизма канавки направлены в левую сторону, а на другой – в правую. Эта интересная особенность нужна, чтобы груз двигался в вертикальной плоскости без горизонтальных смещений относительно самого барабана.

Преимущества такого устройства грузового барабана: снижается нагрузка между тросом и трубой барабана, что позволяет увеличить срок службы самого механизма.

Между самими канавками располагается гладкая поверхность. Чаще всего концы троса крепятся по краям самого барабана. Канат, спускающийся с барабана, подсоединяется к внешним блокам крюковой подвески. Поэтому во время наматывания троса он навивается от края к средней части.

Особо стоить обратить внимание на краны с большим значением грузоподъемности и кратности полиспаста. На барабане таких кранов обязательно должны быть предусмотрены длинные участки без канавок для намотки. Это необходимо для стабильной работы, однако приводит к увеличению длины самого барабана и размеров подъемного механизма.

Чтобы ликвидировать этот существенный недостаток, используют другую схему подсоединения троса к барабану. Концы каната подсоединяются к краям средней части без нарезки и далее подаются к внутренним элементам подвески. Тогда во время перемещения груза вверх канат навивается уже от середины к краям.

Министерство образования Российской Федерации

Санкт-Петербургский институт машиностроения

(ВТУЗ-ЛМЗ)

Кафедра «Теория механизмов и детали машин»

КРАН МОСТОВОЙ

МЕХАНИЗМ ПОДЪЁМА ГРУЗА

Санкт-Петербург

Механизм подъёма груза . Методические указания к курсовой работе для студентов ПИМаш смешанного и вечернего обучения всех специальностей. Изложен порядок расчета элементов механизма, методика расчета механизма подъёма, приведены справочные данные по выбору элементов механизма подъёма.

Редакция 1987г. Составитель: асс. .

Научный редактор: канд. техн. наук, доцент.

Редакция 2000г. Составитель: ст. преп. .

Научный редактор: докт. техн. наук, проф. Ю.А. Державец.

1. ОБЩИЕ УКАЗАНИЯ

Цель методических указаний - практическое усвоение курса «Подъёмно-транспортные машины» раздела: «Машины периодического действия», «Краны».

Объём курсовой работы - пояснительная записка на листах формата А4 (объёмом до 20 страниц) и чертеж узла на листе формата А2, которые выполняются в соответствии с требованиями ЕСКД. Все расчеты делаются в системе СИ.

Объект проектирования - механизм подъёма груза, барабан, подвеска.

Принципиальная схема механизма - составные части механизма, рис.1:

1 - электродвигатель;

2 - тормоз с тормозной муфтой;

4 - барабан и подвеска (на рис. не показана).

Действующие нагрузки - на рис.2 показана сила (грузоподъёмность) приложенная к крюку подвески 3.

Задание - помещено в Приложениях, приведены исходные данные для проектирования:


Грузоподъёмность ;

Скорость механизма подъёма груза ;

Высота подъёма груза ;

Режим работы механизма: Л- легкий, С - средний, Т - тяжелый, ВТ - весьма тяжелый.

Последовательность выполнения задания:

1) Выбор кратности полиспаста.

2) выбор диаметра каната.

3) Определение диаметра блока.

4) Определение размеров барабана и его частоты вращения.

5) Выбор электродвигателя.

6) Выбор редуктора.

7) Выбор тормозной муфты.

8) Выбор тормоза.

9) Проверочный расчет электродвигателя по времени пуска механизма подъема.

10) Проверочный расчет тормоза по времени торможения механизма подъёма.

ОБЩИЕ СВЕДЕНИЯ

В мостовых (козловых и др.) кранах механизм подъёма груза размещен на крановой тележке. Схема механизма подъёма кранов общего и специального назначений зависит от многих факторов: типа грузозахватного устройства, массы поднимаемого груза, высоты подъёма и т. д. Общая принципиальная схема механизма подъёма, характерная для кранов грузоподъёмностью 5...50 т, приведена на рис.1.

Рис.1. Кинематическая схема механизма подъёма груза.

Схема механизма подъёма груза позволяет производить блочную сборку узлов , с использованием стандартных элементов: электродвигателя 1, тормоза с тормозной муфтой 2, редуктора 3, барабана 4 и подвески (на схеме не показана). Такая компоновка схемы механизма подъёма груза наиболее распространена при серийном производстве, она широко применяется и является типовой для кранов малой и средней грузоподъёмности.

Кроме рассмотренной схемы, возможны другие компоновки механизма подъёма груза, такие как схемы с торсионным валом, с открытой передачей и т. д.

2. ВЫБОР КРАТНОСТИ ПОЛИСПАСТА

Для выигрыша в тяговом усилии в механизмах подъема используется п о л и с п а с т, который представляет собой систему подвижных (в крюковой подвеске) и неподвижных (обводных) блоков.

Для принятой схемы механизма подъёма следует выбирать тип полиспаста, определяемый схемой навивки каната на барабан и запрессовки каната , , .

При непосредственной навивке каната на барабан (мостовые, козловые, консольные краны) во избежание смещения груза при его подъёме-спуске и для равномерного нагружения опоры барабана применяются сдвоенные полиспасты

Рис.2. Схема сдвоенного полиспаста. 1 - барабан; 2 - уравнительный блок (обводной); 3 - подвеска; 4 - канат (гибкий тяговый орган).

При использовании сдвоенных полиспастов на барабан одновременно наматываются две ветви каната. В зависимости от грузоподъёмности крана выбирают кратность полиспаста . Повышение кратности на единицу достигается заменой уравнительного блока на противоположную сторону полиспаста; процесс можно повторять до достижения любой кратности.

Необходимая кратность полиспаста для механизма подъёма груза приведена в табл.1.

Таблица 1

КРАТНОСТЬ ПОЛИСПАСТА МЕХАНИЗМА ПОДЪЁМА ГРУЗА 0 " style="border-collapse:collapse">

Характер навивки на барабан

Тип полиспаста

Грузоподъёмность , T

Непосредственно на барабан (мостовой, козловой, консольный кран)

Сдвоенный

Через направляющий блок (стрелковые краны)

3. ВЫБОР ДИАМЕТРА КАНАТА

https://pandia.ru/text/78/240/images/image010_27.gif" width="33" height="24">


где: https://pandia.ru/text/78/240/images/image011_21.gif" width="15" height="19 src="> - запас прочности каната от режима работы (Л - 5; С - 5,5; Т и ВТ - 6);

https://pandia.ru/text/78/240/images/image013_18.gif" width="131" height="49">Наибольшее натяжение , КН, каната определяют

где: - грузоподъёмность крана, т, Приложение 1;

https://pandia.ru/text/78/240/images/image014_21.gif" width="24" height="20 src=">

Условия работы

КПД уравнительного

Кратность полиспаста

Редкая смазка

Нормальная смазка в условиях нормальных температур

Диаметр стального каната выбирают по табл.3 по условию (1). Наиболее широко применяют канаты двойной свивки маркированных групп =1600...1800 МПа. При более низких значениях маркировочных групп нерационально увеличен диаметр каната, а следовательно, барабана и блоков, а при более высоких канат имеет повышенную жесткость, что снижает срок его службы.

Таблица 3

ХАРАКТЕРИСТИКИ КАНАТОВ ДВОЙНОЙ СВИВКИ

Площадь сечения,

Масса 1000 м каната,

Разрывное усилие каната по маркировочным группам , кН

Тип ЛК-Р конструкции 6х19 1+6+6/6 + I о. с. (ГОСТ 2688-80)

Тип ТЛК-0 конструкции 6х37 1+6+15+15 + I о. с. (ГОСТ 3079-80)

В зависимости от требований, предъявляемых к смазочным материалам, узлы детали крановых механизмов делятся на следующие основные группы: редукторы и зубчатые муфты, открытые передачи, подшипники качения и скольжения, реборды ходовых колес, рельсы и направляющие, канаты.

Для редуктора применимы трансмиссионные масла. Существенные особенности трансмиссионных масел по ГОСТ 23652-79 - их всесезонность, длительные сроки службы и высокая нагрузочная способность.

Для подшипников качения предпочтительны всесезонные смазки из числа обладающих хорошим антикоррозионным действием и длительным сроком службы.

Реборды ходовых колес смазывают с помощью графитных стержней (ТУ 32ЦТ 558-74).

Пресс солидол С. ГОСТ 4366-76 - смазка для подшипников, открытых передач, направляющих.

Для смазки каната применяется смазка канатная по ТУ 38-1-1-67.

Графитная смазка ГОСТ 333-80 применяется для смазки реборд ходовых колёс и канатов.

Смазочные материалы не должны содержать посторонних примесей.

Техника безопасности

К управлению краном допускаются лица не моложе 18 лет, имеющие соответствующее удостоверение и прошедшие медицинский осмотр для пригодности работы на кране.

Перед началом работы машинист обязан проверить техническое состояние основных механизмов и узлов крана (тормозов, крюка, канатов, блоков, металлоконструкции крана) и исправной работы приборов безопасности.

Эксплуатация электроталей и надзор за ними должны производится в соответствии с изданными Госгортехнадзором «Правилами устройства и безопасной эксплуатации грузоподъемных кранов».

Надзор за электроталями возлагается распоряжением администрации на определенное лицо технического персонала, обладающее соответствующей квалификацией и опытом, которое и является ответственным за исправное состояние электроталей и их безопасную эксплуатацию.

Напряжение в электросети не должно быть ниже действующих норм, в противном случае электроталь, тормоз и магнитные пускатели будут работать ненормально.

Не допускается подъем грузов, превышающих номинальную грузоподъемность, а также превышение указанного в технической характеристике режима работы и эксплуатация электроталей в условиях, не допускающих их применение.

При управлении электроталью рабочему следует находиться со стороны открытой части барабана.

Нельзя допускать такой подвески груза, при которой получается недопустимое нагружение острия крюка. В таких случаях крюк может заметно разогнуться.

Подтаскивание грузов электроталью при косом натяжении канатов, отрывание прикрепленных предметов, а также производство с помощью электротали несвойственных для нее работ запрещается.

Правилами ГГТН, а также стандартом СЭВ 725-77 на грузоподъёмных кранах с электрическим приводом предусмотрена установка концевых выключателей для автоматической остановки:

крана, если его скорость может превышать 0,533 м/с (по стандарту СЭВ-0,5 м/с);

механизма подъёма грузозахватного устройства перед подходом к упору.

При подъеме груза не следует доводить обойму крюка до конечного выключателя.

Конечный выключатель является аварийным ограничителем. Пользоваться им как постоянно действующим автоматическим остановом не разрешается.

Совершенно необходимо в начале каждой смены проверять исправность действия конечного выключателя.

Концевой выключатель механизма передвижения устанавливают таким образом, чтобы в момент выключения тока расстояние от буфера до упоров составляло не менее половины пути торможения. Концевые выключатели устанавливают в электрической цепи так, чтобы при их размыкании сохранилась цепь для обратного движения механизма.

Концевой выключатель механизма подъёма устанавливают так, чтобы после остановки грузозахватного устройства зазор между ним и упором на тележке составлял не менее 200 мм. Для этой цели применяют выключатели типа КУ 703, имеющий двуплечий рычаг.

Блоки предназначены для поддержания и изменения направления движения каната диаметром . Блоки подразделяют на подвижные, ось которых перемещается в пространстве, и неподвижные. Разновидностью неподвижных блоков является уравнительный блок, который при подъеме и опускании груза не вращается, а служит для уравнивания длины неравномерно вытягивающихся ветвей каната в сдвоенном полиспасте.

Блоки для канатов изготовляют из стали литьем, сваркой или штамповкой. Для литых блоков применяют сталь с механическими свойствами не хуже, чем у стали 45Л-11 , для штампованных - не хуже, чем у стали 45 , и для сварных - не хуже, чем у стали Ст 3 .

Профиль ручья блока должен обеспечивать беспрепятственный вход и выход каната и иметь наибольшую площадь соприкосновения с ним (наибольшую площадь поверхности ручья). Исходя из этого рекомендуется соотношение основных размеров блоков принимать такими, как показано на рис.3.10.

Блоки должны иметь устройство (скоба), исключающее выход каната из ручья блока. Зазор между указанным устройством и ребордой блока должен составлять не более 20% диаметра каната .

Барабаны предназначены для наматывания гибкого тягового элемента (каната или цепи). Изготавливают их из чугуна (литые) или стали (литые или сварные) .

Для снижения удельного давления между канатом и барабаном и предотвращения трения каната о соседний виток на поверхности барабана делают винтовые канавки с шагом мм. Если на барабан наматывается одна ветвь (одинарный полиспаст), он имеет канавки только одного направления. При двух ветвях (сдвоенный полиспаст) канавки выполняют правого и левого направления.

Конструктивное исполнение барабанов должно предусматривать размещение деталей для закрепления каната на барабане, которое может осуществляться при помощи накладных планок, прижимных планок или клина (рис.3.9).

Минимальные диаметры барабанов D , блоков D бл , и уравнительных блоков D ур.бл. по средней линии огибаемых стальными канатами, определяют по формулам:

С увеличением отношения D/d k долговечность каната возрастает, так как уменьшаются контактные и изгибные напряжения.

Полученный по формуле (3.9) диаметр барабана D следует округлить в большую сторону до значения из ряда: 160; 200; 250; 320; 400; 450; 500; 560; 630; 710; 800; 900 и 1000 мм.

Допускается изменение коэффициента h 1 , но не более чем на два шага по группе классификации в большую или меньшую сторону (табл. 3.7) с соответствующей компенсацией путем изменения величины Z р (табл. 3.6) на то число шагов в меньшую или большую сторону. Барабаны под однослойную навивку каната должны иметь нарезанные по винтовой линии канавки (рис. 3.11). У грейферных кранов при однослойной навивке каната на барабан и у специальных кранов, при работе кото-рых возможны рывки и ослабление каната, барабаны должны снабжаться устройством (канатоукладчиком), обеспечивающим правильную укладку каната или контроль положения каната на барабане.

Гладкие барабаны применяются в случаях, когда по конструктивным причинам необходима многослойная навивка каната на барабан, а также при навивке на барабан цепи (рис. 3.12) Гладкие барабаны и барабаны с канавками, предназначенные для многослойной навивки каната, должны иметь реборды с обеих сторон барабана. Реборды барабанов для канатов должны возвышаться над верхним слоем навитого каната не менее чем на два его диаметра, а для цепей - не менее чем на ширину звена цепи.

Длина барабана, определяющая его канатоемкость, согласно должна быть такой, чтобы при низшем расположении грузозахватного органа (крюка и т. п.) на барабане оставались навитыми не менее 1,5 витка каната или цепи, не считая витков, находящихся под зажимным устройством. С учетом фланцев и витков на закрепление каната полная длина барабана при наматывании:

· на одной ветви каната

Минимальное расстояние между осью барабана и осью блоков крюковой подвески можно принять h min ≈ 3D .

Основные требования к конструктивному исполнению представлены .

Предельные нормы браковки:

· блоки - износ ручья блока 40% от первоначального радиуса ручья.

· барабаны - трещины любых размеров, износ ручья барабана по профилю более 2 мм.