Принцип работы механизма подъема груза. Проверка работы механизма подъема груза крана в режиме неустановившегося движения

Подбор подшипников для вала барабана

Исходя из схем полиспастов с одинарным барабаном, счетные схемы для определения радиальной нагрузки на барабан будет следующая:

Рисунок 10. Схема нагрузки на барабан

Величина реакции, где сила натяжения каната.

Коэффициент безопасности.

Для барабана выбираем радиальный шариковый однорядный подшипник 116, особо легкая серия. Расчетная долговечность равна:

Полученная долговечность достаточная для крана.

Проверка работы механизма подъема груза крана в режиме неустановившегося движения

Время пуска при подъеме крана определяется по формуле:

Момент инерции двигателя,

  • - для двигателей типа MTKF,
  • - средний пусковой момент

Вращающий момент на входе редуктора

Частота вращения двигателя

Получаем

Для обеспечения времени пуска в интервале сек применяется двигатель с фазным ротором типа MTF 411-6, где время пуска регулируется работой реостатного контроллера.

Компоновка механизма подъема груза

Механизм подъема груза состоит из редуктора 1, быстроходный вал которого соединен с электродвигателем 6 при помощи втулочно-пальцевой муфты с тормозным шкивом. На этом валу стоит колодочный с электродвигателем тормоз 4. барабан 2 сдвоенный, который обеспечивает симметрию приложения нагрузки (усилие в канате), нагрузка при подъеме груза, на подшипниках не изменяется.

Рисунок 11. Механизм подъема груза крана

Ось барабана соединяется с тихоходным валом редуктора при помощи зубчатой муфты, обеспечивающей компактное соединение валов, а вторым концом ось барабана опирается не подшипниковый узел 3.

Все узлы и механизм установлены на сварной раме 5 из швеллеров.

Подъем и перемещение грузов в поперечном направлении осуществляется подвижной тележкой, установленной на мосту крана. Тележка состоит из сварной рамы с установленными механизмами подъема груза и механизма передвижения для перемещения ее по рельсам вдоль моста (рисунок 6).

Механизмы подъема различных видов кранов принципиально одинаковы, состоят из электродвигателя, тормоза, редуктора, барабана и полиспаста. Электродвигатель соединен с редукторами при помощи зубчатых муфт и приводных валов. Для погрузки - выгрузки железобетонных плит механизм подъема крана КМЭСТ - 10 оснащается грузозахватным органом крюком.

Рисунок 6 ­ Механизм подъема груза

Механизм подъема представляет собой лебедку, связанную со сдвоенным полиспастом, имеющим грузоподъемность, равную приблизительно 0,25 основной, и используемым для подъема малых грузов с большой скоростью.

Механизм передвижения тележки имеет два холостых и два приводных колеса, вращаемых электродвигателем через редуктор.

Кинематическая схема механизма подъема

Кинематическая схема механизма подъема с крюковой подвеской показана на рисунке 7.

Электродвигатель 1 соединен с цилиндрическим редуктором 5 при помощи муфт 2 и 4 и вала - вставки 3, полумуфта 4 со стороны редуктора выполнена с тормозным шкивом, на котором установлен колодочный тормоз. Редуктор 5 соединен с барабаном 6 при помощи муфты 2. На барабан наматывается канат полиспаста с грузозахватным приспособлением.

Рисунок 7 - Кинематическая схема механизма подъема груза:

1 - электродвигатель, 2 - муфты, 3 - вал-вставка, 4 - тормоз, 5 -редуктор, 6 - барабан.

Технические характеристики механизма подъема груза

Технические показатели механизма подъема груза в таблице 3.

Таблица 3 ­ Технические показатели механизма подъема груза

Полиспаст сдвоенный, с кратностью 2 (Z = 2; U = 2)

Канат двойной свивки типа ЛК - Р конструкции 6Ч9 (1+6+6/6) + 1 о.с. диаметром dK = 14 мм по ГОСТ 2688-80, с помощью прижимной планки двумя болтами крепится к барабану). Длина каната LK - 16,71 м.

Барабан литой из чугуна СЧ28, разборный

­ длина барабана ­ l = 1,324 м;

­ диаметр барабана по центру навиваемого каната­ Dб = 0,35 м;

­ длина нарезанной части барабана с одной стороны­lн = 0,427 м;

­ шаг нарезки ­ t = 16 мм.

Электродвигатель асинхронный с короткозамкнутым ротором общепромышленной серии MTF

­ типоразмер­4МТН 225L6 ;

­ номинальная мощность, кВт­ 55;

­ частота вращения вала, мин-1­ 960;

­ момент инерции ротора, кгм2 ­1,02;

­ масса, кг ­ 500.

Редуктор горизонтальный двухступенчатый цилиндрический Ц2 ­ 400

­ передаточное число­ 12,41;

­ режим работы, ПВ % ­25;

­ частота вращения быстроходного вала, мин-1 ­1500;

­ мощность на быстроходном валу, кВт ­ 81;

­ диаметр проточки под подшипники выходного конца вала, выполненного в виде зубчатой полумуфты, мм ­110

Муфты с тормозным шкивом №2

­ передаваемый крутящий момент, Нм­ 1000

­ диаметр тормозного шкива, мм­ 300

­ ширина тормозного шкива, мм ­ 150

­ момент инерции муфты, кгм2 ­ 1,5

­ типоразмер ­ТКГ - 300

­ номинальный тормозной момент, Нм ­ 800

­ расчетный тормозной момент, Нм­740

­ диаметр тормозного шкива, мм­300

­ ширина тормозной колодки, мм ­140

­ масса, кг ­ 80

Траверса

Для выполнения различных технологических операций мостовые специальных краны оснащают траверсами - специальными грузозахватными приспособлениями для работы с различными типами грузов. Траверса представляет собой съёмную, как правило, балочную пространственную конструкцию, которая укомплектована специализированными захватывающими устройствами.

В зависимости от условий эксплуатации и характеристики перемещаемого груза траверсы подразделяют на линейные, пространственные, модульные, механические и специальные, к которым относятся магнитные, электромагнитные, фрикционные и вакуумные траверсы с соответствующим типом захватов. Применение захватов различных типов позволяет работать с металлопрокатом, слябами, трубами, длинномерными грузами и контейнерами.

Для чередования перемещения грузов различных типов мостовой кран может быть укомплектован дополнительными сменными траверсами нужной длины, оснащёнными необходимыми грузозахватными органами: магнитами, клещами, управляемыми лапами для подхвата. Траверса с тележкой крана соединена с помощью жесткого подвеса.

Траверсы представляют собой коробчатые балки постоянного, а при большой длине - переменного сечения.

Траверса крепится к мостовому крану либо за центральную часть, либо за концевые продольные или поперечные элементы, при этом сама траверса располагается вдоль или поперёк моста крана. При жёстком подвесе крана КМЭСТ-10 траверса снабжается дополнительными штангами с направляющими, поэтому колебания, возникающие при движении вдоль подкрановых путей минимальны, и определяются парциальными колебаниями шахты и колонны с грузом относительно продольной оси моста. Жёсткий подвес траверсы за счёт большей скорости движения позволяет обеспечить больший грузопоток, поскольку снижается время позиционирования захвата и зацепления груза. Мостовые краны с жёстким подвесом траверсы широко применяют в металлургии, при мартеновском, прокатном и кузнечно-прессовом производстве

Использование траверсы позволяет избежать повреждения груза при транспортировке, а также кантовать груз в точках на разных плоскостях, уменьшить высоту подъёма крюка, транспортировать длинномерные грузы без воздействия сжимающих и изгибающих нагрузок, автоматизировать процесс строповки груза.

Управление механизмами крана осуществляется из кабины, подшенной к мосту крана на стороне, противоположной расположению главных троллеев, для обслуживания которых используются люльки-кабины.

К деталям узла барабана, подлежащим расчету, относятся: барабан, ось барабана, подшипники оси, крепление конца каната к барабану.

Прочностным расчета барабана является расчет его стенки на сжатие. Для группы режима работы принимаем материал барабана сталь 35Л с [ сж ]= 137 МПа , барабан выполнен литым

Толщина стенки литого барабана

0,01 · Дн + 0,003 = 0,01 · 400 + 0,003 = 0,007 м

По условиям технологиям изготовления литых барабанов? 10 15 мм. С учетом изнашивания стенки барабана примем = 15 мм = 0,015 м

Проверяем выбранную стенку барабана на сжатие по формуле

Уточняем выбранное значение толщины стенки барабана по формуле

где - коэффициент, учитывающий влияние деформаций стенки барабана и каната, определяется по зависимости

где Ек - модуль упругости каната. Для шестипрядных канатов с органическим сердечником Ек = 88260 МПа; Fк - площадь сечения всех проволок каната; Еб - модуль упругости стенки барабана, для литых стальных барабанов Еб = 186300 МПа, по зависимости 0,0062 м при отношении длины барабана к его диаметру допускаемое напряжение в формуле (46) следует уменьшить на с% при навивке на барабан двух концов каната, причем для величина с = 5%. Тогда

[ сж ] = 0,95 · 137 = 130,15 МПа

1,07 · 0,86452 · = 0,0058 м. Следовательно, принятое значение = 0,015 м удовлетворяет условиям прочности.

При отношении = 2,05 < 3 4 расчет стенки барабана на изгиб и кручение не выполняется.

Отношение = 2,05 < = 6,5 , поэтому расчет цилиндрической стенки барабана на устойчивость также можно не выполнять.

В качестве прижимного устройства каната на барабане используется напряжение планки с полукруглыми канавками. Согласно правилам Госгортехнадзора число установленных одноболтовых планок должно быть не менее двух, которые устанавливают с шагом 60 0 . Суммарное усилие растяжение болтов, прижимающих канат к барабану.

где f = 0,1 0,12 - коэффициент трения между конатом и барабаном,

Угол наклона боковой грани канавки. = 40 0 ;

Угол обхвата каната неприкосновенными витками, = (1,5 2)· 2П = (3 4) · П

Необходимое число болтов

где k ? 1,5 - коэффициент запаса надежности крепления каната к барабану,

f 1 = - приведенный коэффициент трения между канатами и планкой;

f 1 = = 0,155; l - расстояние от дна каната на барабане до верхней плоскости прижимной планки, конструктивно примем l = 0,025 м.

В качестве материала болта принята сталь ВСтЗсп с тех = 230 МПа. Допускаемое напряжение растяжения [ р ] = = = 92 МПа; d 1 - средний диаметр резьбы болта, для каната диаметром d к = 13 мм принимаем болт М12, d 1 = 0,0105 м

Принимаем z = 8, четыре двухболтовые в планки.

Ось барабана испытывает напряжение изгиба от действия усилий двух ветвей каната при сдвоенном полиспасте, собственным весом барабана пренебрегаем. Расчетная схема оси барабана механизма подъема представлена на рисунке 8.

Нагрузка на ступицы барабана (при пренебрежении его весом)

где l н - длина нарезной части барабана, l н = 303,22 мм; l гл - длина гладкой средней части, l гл = 150 мм (см. рисунок)

Расстояние от ступиц барабана до опор оси предварительно принимаем : l 1 = 120 мм, l 2 = 200 мм, расчетную длину оси l = L б + 150 200 мм = 820 + 150 = 970 мм.

Расчет оси барабана сводится к определению диаметров цапф d ш и ступицы d с из условия работы оси на изгиб в симметричным цикле :

Где Ми - изгибающий момент в расчетном сечении,

W - момент сопротивления расчетного сечения при изгибе,

[ - 1 ] - допускаемое напряжение при симметричном цикле, определяется по упрощенной формуле:

Рисунок 8 - Расчетная схема оси барабана механизма подъема груза.

где к 0 - коэффициент учитывающий конструкцию детали, для валов и осей, цапф к 0 = 2 2,8; - 1 - предел выносливости,

[n] - допускаемый коэффициент запаса прочности, для группы режима работы 5М[n] = 1,7. Материал оси - сталь 45, тех = 598 МПа, -1 = 257 МПа

Нагрузки на ступицы барабана по формуле (50)

Находим реакции в опорах оси барабана: ? М 2 = 0

R1 · l = P1(l - l1) + P2 · l2

R 2 = P 1 + P 2 - R 1 = 14721,8 + 10050,93 - 14972,903 = 9799,827 Н

Изгибающий момент под левой ступицей:

М 1 = R 1 · l 1 = 14972,903 · 0,12 = 1796,75 Н · м

Изгибающий момент под правой ступицей:

М 2 = R 2 · l 2 = 9799,827 · 0,2 = 1959,965 Н · м

Находим диаметр оси под правой ступицей, где действуют наибольший изгибающий момент М 2:

Принимаем d С = 0,07 м

Принимаем остальные диаметры участков оси барабана согласно рисунку 9.

Рисунок 9 - Эскиз оси барабана.

Из в качестве подшипников опор выбраны радиальные двухрядовые шарикоподшипники № 1610 ГОСТ5720 - 75 с внутренним диаметром 50 мм, наружным 110 мм, шириной 40 мм, динамическая грузоподъемность с = 63,7 кН, статическая с 0 = 23,6 кН.

Проверяем выбранные подшипники по . Требуемая динамическая грузоподъемность

Стр = F п · (53)

где F п - динамическая проведенная нагрузка, L - номинальная долговечность, млн. циклов, 3 - показатель степени кривой усталости Велера для шарикоподшипников.

Номинальная долговечность определяется по формуле

где n - частота вращения колца подшипника при установившемся движении, об/мин;

Т- требуемая долговечность подшипника, ч. Для группы режима работы 5М величина Т = 5000ч.

F п = F экв · r б · r темп (55)

где F экв - эквивалентная нагрузка; к б - коэффициент безопасности, к б = 1,2; к темп - температурный коэффициент, к темп = 1,05 (для 125 0 с)

Эквивалентная нагрузка определяется с учетом фактического или усредненного графика работы механизма (см. рисунок) в зависимости от группы режима работы:

где F 1 , F 2 …. F i - постоянные приведенные нагрузки на подшипник при различной массе транспортируемого груза, действующие в течение времени

t 1, t 2 , …. t i за срок службы, при соответствии частоте вращения n 1, n 2 ……n i ; Т - общий расчетный срок службы подшипника, ч;

n - частота вращения детали при установившемся режиме для движения, длящегося наиболее долго.

F п = 11126 · 1,2 · 1,05 = 14018,76 Н

С тр = 14018,76 ·

следовательно, выбранный подшипник оси барабана подходит.

Выполняем уточненный расчет оси барабана в опасных сечениях 1 - 1 и 2 - 2 (см. рисунок), а также в сечении 3 - 3.

Виды и сроки проведения технических освидетельствований крана.

Техническое освидетельствование проводится с целью установить, что грузоподъемная машина находится в исправном состоянии, обеспечивающем ее безопасную эксплуатацию. Кроме того, при техническом освидетельствовании проверяется правильность установки грузоподъемной машины и соблюдение регламентированных правилами габаритов. Различают полное и частичное техническое освидетельствование.

Полное техническое освидетельствование грузоподъемных машин складывается из осмотра их состояния, статического и динамического испытаний под нагрузкой. При частичном техническом освидетельствовании производится только осмотр грузоподъемной машины без испытания ее грузом.

Полному техническому освидетельствованию грузоподъемные машины должны подвергаться перед вводом в работу (первичное техническое освидетельствование) и периодически не реже одного раза в три года. Редко используемые краны (краны, обслуживающие машинные залы электрических и насосных станций, компрессорные установки и другие грузоподъемные машины, используемые только при ремонте оборудования) должны подвергаться полному периодическому техническому освидетельствованию не реже чем через каждые пять лет. Отнесение кранов, зарегистрированных в местных органах технадзора, к категории редко используемых производится этими органами, а остальных кранов -инженерно-техническим работником по надзору за грузоподъемными машинами на предприятии.

Частичное техническое освидетельствование всех грузоподъемных машин должно производиться не реже одного раза в 12 мес.

Полное первичное техническое освидетельствование стреловых самоходных (автомобильных, железнодорожных, гусеничных, пневмоколесных кранов, а также кранов-экскаваторов) и прицепных кранов, а также грузоподъемных машин, которые выпускаются с завода и перевозятся на место эксплуатации в собранном виде (например, электрические и ручные тали, лебедки), проводится отделом технического контроля завода-изготовителя перед отправкой их владельцу.

Полное первичное техническое освидетельствование всех остальных кранов (мостовых, башенных, портальных и др.) проводится после их монтажа на месте эксплуатации администрацией предприятия (инженерно-техническим работником по надзору в присутствии лица, ответственного за исправное состояние грузоподъемных машин на данном предприятии). Периодическое техническое освидетельствование (полное и частичное) кранов всех типов и других грузоподъемных машин, а также внеочередные технические освидетельствования проводятся администрацией предприятия - владельца машин.



Назначение и разновидности механизма подъема

Механизм подъема предназначен для подъема и опускания груза на необходимую высоту с заданной скоростью и удержания груза на любой, требуемой условиями технологического процесса, высоте.

Подъемный механизм может быть самостоятельным (тельфер, таль) или входить в состав другой перегрузочной установки, например в состав крана.

Механизм подъема включает в себя двигатель, передаточный механизм (редуктор или редуктор и открытую передачу), тормоз, грозовой барабан, блоки, тяговый орган (чаще всего стальной канат) и грузозахватное устройство (крюк, грузовая подвеска, грейфер и т.п.).

Входящие в состав кранов механизмы подъема грузов (грузовые лебедки) в зависимости от рода перегружаемого груза подразделяются на грейферные и крюковые лебедки.

Крюковые подъемные лебедки обычно имеют один электродвигатель, один или два грузовых барабана. При этом барабаны могут вращаться только одновременно и без изменения направления вращения относительно друг друга.

В зависимости от количества этих конструктивных элементов крюковые лебедки называются одномоторными однобарабанными или одномоторными двухбарабанными.

Конструктивное исполнение крюковых лебедок может быть самым различным в зависимости от количества барабанов и передаточных устройств (рис. 1. а, б, в).

Рис.6. Схемы одномоторных крюковых лебедок:

1 - электродвигатель; 2 - тормоз: 3 - редуктор: 4 - барабан: 5 – открытая передача.

Грейдерные (двухбарабанные) лебедки различают одномоторные и двухмоторные, позволяющие получить различные сочетания вращения барабанов, что необходимо для обеспечения работы грейфера. В грейферных лебедках кранов один барабан является замыкающим, а второй поддерживающим, аналогично и называются лебедки - одна замыкающая, а вторая - поддерживающая.

В процессе работы грейферного крана возможны следующие сочетания вращения барабанов:

При подъеме и опускании грейфера барабаны обеих лебедок вращаются синхронно;

При зачерпывании груза грейфером барабан замыкающей лебедки вращается в сторону подъема, барабан поддерживающей лебедки - на опускание, обеспечивая слабину каната по мере заглубления грейфера;

При раскрытии грейфера барабан замыкающей лебедки вращается на опускание, а барабан поддерживающей заторможен, иногда для более быстрого раскрытия грейфера барабаны лебедок вращают в разные стороны, т.е. замыкающий на спуск, а поддерживающий - на подъем.

Одномоторные грейферные лебедки (рис. 2) имеют один двигатель, обеспечивающий различное сочетание вращения барабанов посредством фрикционных муфт и тормозов. Двигатель жестко связан с замыкающим барабаном, поддерживающий же барабан присоединяется к двигателю посредством управляемой фрикционной или планетарной муфты.

Одномоторные лебедки менее совершенны и более сложны в управлении, в них совмещение таких операций, как подъем-опускание и раскрытие-закрытие грейфера невозможно (рис. 2.а).

Двухмоторные лебедки позволяет избежать этих недостатков, хотя они сложнее и дороже одномоторных лебедок, но повышение оперативности и производительности кранов окупает дополнительные затраты. В настоящее время двухмоторные лебедки являются основным типом грейферных лебедок кранов. Из большого разнообразия двухмоторных лебёдок наибольшее применение имеют лебедки, состоящие из двух нормальных крановых крюковых лебедок с независимыми двигателями (рис. 2. б), а также лебедки с планетарной связью между барабанами.

Главным требованием, предъявляемым к работе двухмоторных лебедок является равномерность распределения нагрузок на канаты и синхронность вращения барабанов с целью обеспечения равной скорости выборки канатов.

В зависимости от требований, предъявляемых к смазочным материалам, узлы детали крановых механизмов делятся на следующие основные группы: редукторы и зубчатые муфты, открытые передачи, подшипники качения и скольжения, реборды ходовых колес, рельсы и направляющие, канаты.

Для редуктора применимы трансмиссионные масла. Существенные особенности трансмиссионных масел по ГОСТ 23652-79 - их всесезонность, длительные сроки службы и высокая нагрузочная способность.

Для подшипников качения предпочтительны всесезонные смазки из числа обладающих хорошим антикоррозионным действием и длительным сроком службы.

Реборды ходовых колес смазывают с помощью графитных стержней (ТУ 32ЦТ 558-74).

Пресс солидол С. ГОСТ 4366-76 - смазка для подшипников, открытых передач, направляющих.

Для смазки каната применяется смазка канатная по ТУ 38-1-1-67.

Графитная смазка ГОСТ 333-80 применяется для смазки реборд ходовых колёс и канатов.

Смазочные материалы не должны содержать посторонних примесей.

Техника безопасности

К управлению краном допускаются лица не моложе 18 лет, имеющие соответствующее удостоверение и прошедшие медицинский осмотр для пригодности работы на кране.

Перед началом работы машинист обязан проверить техническое состояние основных механизмов и узлов крана (тормозов, крюка, канатов, блоков, металлоконструкции крана) и исправной работы приборов безопасности.

Эксплуатация электроталей и надзор за ними должны производится в соответствии с изданными Госгортехнадзором «Правилами устройства и безопасной эксплуатации грузоподъемных кранов».

Надзор за электроталями возлагается распоряжением администрации на определенное лицо технического персонала, обладающее соответствующей квалификацией и опытом, которое и является ответственным за исправное состояние электроталей и их безопасную эксплуатацию.

Напряжение в электросети не должно быть ниже действующих норм, в противном случае электроталь, тормоз и магнитные пускатели будут работать ненормально.

Не допускается подъем грузов, превышающих номинальную грузоподъемность, а также превышение указанного в технической характеристике режима работы и эксплуатация электроталей в условиях, не допускающих их применение.

При управлении электроталью рабочему следует находиться со стороны открытой части барабана.

Нельзя допускать такой подвески груза, при которой получается недопустимое нагружение острия крюка. В таких случаях крюк может заметно разогнуться.

Подтаскивание грузов электроталью при косом натяжении канатов, отрывание прикрепленных предметов, а также производство с помощью электротали несвойственных для нее работ запрещается.

Правилами ГГТН, а также стандартом СЭВ 725-77 на грузоподъёмных кранах с электрическим приводом предусмотрена установка концевых выключателей для автоматической остановки:

крана, если его скорость может превышать 0,533 м/с (по стандарту СЭВ-0,5 м/с);

механизма подъёма грузозахватного устройства перед подходом к упору.

При подъеме груза не следует доводить обойму крюка до конечного выключателя.

Конечный выключатель является аварийным ограничителем. Пользоваться им как постоянно действующим автоматическим остановом не разрешается.

Совершенно необходимо в начале каждой смены проверять исправность действия конечного выключателя.

Концевой выключатель механизма передвижения устанавливают таким образом, чтобы в момент выключения тока расстояние от буфера до упоров составляло не менее половины пути торможения. Концевые выключатели устанавливают в электрической цепи так, чтобы при их размыкании сохранилась цепь для обратного движения механизма.

Концевой выключатель механизма подъёма устанавливают так, чтобы после остановки грузозахватного устройства зазор между ним и упором на тележке составлял не менее 200 мм. Для этой цели применяют выключатели типа КУ 703, имеющий двуплечий рычаг.