Новые разработки двигателей внутреннего сгорания. Перспективы двигателей внутреннего сгорания

На сегодняшний день двигатели внутреннего сгорания переживают не лучший период своей жизни. Постоянный рост цен на нефть, глобальное потепление, в котором винят и их тоже, а также растущие «зеленые» настроения в развитых странах не прибавляют авторитета двигателям внутреннего сгорания.

Но, не смотря на все свои минусы, мы с ними не сможем распрощаться еще на протяжении многих десятилетий. Однако мы можем попытаться сократить немалые аппетиты наших любимцев, тратя меньше энергии на выделение тепла и выжимая из каждой капли топлива тот максимум, который позволяет нам физика.

И, правда, двигатель внутреннего сгорания совсем не безнадежен. В новых автомобильных разработках, и научных лабораториях по всему миру бензиновый двигатель испытывает что-то похожее на Ренессанс.

Защитники экологии не должны бояться этого возрождения двигателей внутреннего сгорания. Так как данные новшества не просто решительно уменьшают количество вредного топлива, они служат технологическим мостом, который приведет нас к полностью электрофицированому будущему. Большинство таких технологий находиться все еще на стадии разработок, ожидая финансирования, или внедрены пока только в опытные образцы, для демонстрации своих возможностей. Не одно из данных решений не является панацеей, но каждое из них показывает, насколько меньше мы могли бы использовать топлива, делая автомобили намного эффективнее.

В прошлом веке бензиновые двигатели стали повсеместны, в этом столетии они станут еще и умными. Рассмотрим некоторые из новых технологий будущего двигателей внутреннего сгорания:

Двигатель Scuderi

Группа Scuderi представляет двигатель разделенного цикла - он делит четыре обычных поршневых цилиндра на два различных типа для более разумного использования каждой капли энергии, которую они могут выработать.

Принцип действия технологии заключается в соединение двух цилиндров между собой. В отличии от обычных двигателей, которые во время четвертого такта выбрасывают сжатые газы, двигатель Scuderi впрыскивает сжатый воздух во второй цилиндр, где проходит воспламенение и выхлоп.

Благодаря данной технологии мы можем использовать два цилиндра из четырех бесплатно. Как показывают компьютерные модели, двигатель Scuderi улучшает экономию по сравнению со своими обычными аналогами на 50 процентов.

Разделение двигателя на горячую и холодную части

Как и предыдущий данный двигатель делиться на две рабочие части, но по сравнению с Scuderi дополнительно использует разные температуры в разных частях двигателя, для достижения максимального КПД.

Большая проблема в обычном четырехтактном двигателе - первые два такта (впуск и сжатие) наиболее эффективны при холоде, в то время третий и четвертый такты работают лучше в горячих условиях. Как утверждают инженеры, если придерживаться данных требований, можно добиться до 40 процентов экономии. Просто отделив область высокой температуры радиатором.

Процесс проходит следующим образом: впуск и сжатие происходят в холодном цилиндре, гарантируя максимальную эффективность при этом, а сгорание и выхлоп сжатой в холодной части смеси происходят в горячем цилиндре. Данная технология дает до 20 процентов экономии топлива, но ученые надеются усовершенствовать систему и выжать из нее 50 процентов.

Двигатель Pinnacle


В данном виде двигателей поршни расположены противоположно друг к другу. Но в отличие от оппозитных двигателей, которые сейчас широко распространены, тут на одну головку цилиндра приходиться два поршня, соответственно взрыв горючей смеси происходит между двумя поршнями. При таком расположении поршней получается колоссальная экономия энергии, которая в привычных двигателях внутреннего сгорания тратиться на выделение высокой температуры.

Первые малолитражки с таким типом двигателей должны быть выпущены уже в 2015, а большие двигатели будут готовы к 2016. Инженеры ожидают увеличение эффективности данного двигателя до 50 процентов.

Данная схема двигателя объединяет в себе конструкции известного многим оппозитного двигателя и описанного выше двигателя Pinnacle. В данной конструкции два поршня расположены в одной головке цилиндра, а два других находятся тоже вместе под углом 180 градусов.

В обоих цилиндрах сгорание происходит в центре, между поршнями, длинные шатуны соединяют наиболее удаленные поршни с коленчатым валом, который расположен посредине. Как и другие оппозитные двигатели, OPOC не нуждается в тяжелых головках цилиндров, снижая вес двигателя. Ход поршней в таком двигателе, меньше чем в обычных бензиновых двигателях.

Инженеры Ecomotors надеяться создать демонстрационный автомобиль с двигателем OPOC, который на 2 литрах топлива будет проезжать до 100 км.

Замена обычных свечей зажигания на лазеры


Лазеры стают все лучше, и теперь их можно использовать в двигателях внутреннего сгорания. В свечах, которые используются сегодня, есть одна проблема, для сжигания большего количества воздуха и меньшего количества топлива нужна сильная искра. Но если увеличить мощность искры, будут быстро изнашиваться электроды. Идеальным выходом из данной ситуации может быть использование лазеров. У лазеров есть большой плюс по сравнению с обычными свечами зажигания, их можно очень точно настроить: установить нужную мощность, угол зажигания, тем самым увеличив мощность и эффективность процесса сгорания.

Японские инженеры уже разработали керамические лазеры диаметром 9 мм специально для двигателей внутреннего сгорания. Такие нововведения будут достаточно эффективны и не требуют серьезных доработок в существующих двигателях.

Процесс сгорания TSCiTM

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость - это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

В далеком 1978 году группа ученых японского института Clean Engine Research, пытавшихся оптимизировать процесс сгорания топлива в двухтактных мотоциклетных моторах, случайно зафиксировала необычный феномен, названный HCCI (Homogeneous charge compression ignition). При достижении определенного давления в камере бензинового двухтактника возгорание топливовоздушного заряда происходило без искры свечи зажигания. Но самое интересное -- вместо привычного зажигания смеси около свечи и последующего распространения пламени на периферию в камере одновременно возникало огромное количество микроочагов возгорания. Как следствие, смесь сгорала при более низкой, чем обычно, температуре, очень быстро и практически полностью. Имеющийся в то время математический аппарат и уровень развития термодинамики не позволили понять причины возникновения феномена HCCI, и его посчитали курьезом. Через 20 лет в арсенале инженеров появились мощные средства компьютерного моделирования, которые помогли приоткрыть завесу тайны над HCCI. Работы в этой области в конце 1990-х годов начались в Германии (Mercedes-Benz, Volkswagen), Японии (Nissan) и Америке (General Motors).

Для образования однородного топливовоздушного облака с предельно низкой плотностью в состав смеси вводятся горячие отработанные газы. Они быстро разогревают этот коктейль, облегчая его перемешивание внутри камеры. Если в условиях классического прямого впрыска топливо распыляется в виде аэрозоля, то в HCCI смесь представляет собой мельчайший туман. Когда поршень сжимает смесь до определенного объема, температура подскакивает до точки самовоспламенения. Сгорание HCCI характерно отсутствием открытого пламени и более низкой, чем у дизельных двигателей, температурой. В результате доля сгоревшего топлива вырастает до 95?97% в сравнении с 75% в циклах Отто и Дизеля. Причем на богатых смесях HCCI не работает -- ему нужны почти гомеопатические доли топлива, на 30 и более процентов беднее, чем у лучших современных ДВС.

Тем не менее отработанная технология HCCI -- пока еще дело будущего. Термодинамика процесса чрезвычайно сложна и требует от ученых решения массы проблем. Главные из них -- неустойчивая работа на холостых и максимальных оборотах, неконтролируемая детонация остатков смеси и неравномерность распределения топливовоздушного облака в камере. Правда, в последние месяцы хорошие новости появляются ободряюще регулярно. Специалисты General Motors сообщают, что сумели обуздать стихию на малых оборотах, а британские инженеры из Lotus заявляют, что построили работающий прототип супердвигателя Omnivore, «снизу доверху» поддерживающий процесс HCCI. По мнению вице-президента компании Bosch Хеннинга Шнайдера, автомобили с расходом топлива в пределах 3 л на 100 км, оснащенные ДВС с технологией HCCI, станут серийными уже в 2015 году. У Volkswagen подход более осторожный -- компания разрабатывает новый двигатель, работающий с использованием свечей зажигания при полной нагрузке и на холостом ходу, а в среднем диапазоне оборотов -- в режиме HCCI. Инженеры Nissan также не стоят на месте -- недавно они объявили о создании мощного софта, позволяющего создать компьютерную модель феномена HCCI, и уже начали работать над собственным супердвигателем.

Горячая стена

Американский инженер Джон Заяц предложил собственную концепцию ДВС, близкую к двигателю с раздельным циклом Скудери.

Изобретатель утверждает, что его двигатель на 15% экономичнее дизеля и на 30% - бензинового аналога по мощности. В двигателе Заяца воздух из цилиндра сжатия попадает в камеру, где создается повышенное давление топливной смеси, на 40% больше обычного уровня для бензиновых моторов. Камера, ее форма, принцип работы, дизайн и материалы для изготовления защищены 19 патентами. Воздух в камере смешивается с топливом и возгорается. Процесс сгорания намного продолжительней, чем в обычном ДВС. Внутри камеры создается особая среда -- «горячая стена», которая служит аккумулятором энергии: неизменная температура и давление в ней сохраняются в 10?100 раз дольше, чем в камере сгорания обычного мотора. Затем раскаленные газы через специальный клапан попадают в рабочий цилиндр.

Электрическая розетка стала символом прогресса. Стенды большинства автокомпаний на прошедшем в январе Детройтском автосалоне буквально били током, а любое упоминание о старом добром ДВС звучало дурным тоном. Так что же — двигатель внутреннего сгорания с треском накрылся капотом? Не спешите с соболезнованиями. По‑крайней мере там же, в Детройте, представитель Toyota Коеи Сага на вопрос репортеров о том, когда ДВС, наконец, выйдет из игры, простодушно ответил: «Никогда! Когда кончится нефть, человечество будет заправлять его водородом».

Аналитики американского Департамента энергетики DOE считают, что ДВС может попыхтеть еще несколько десятилетий. Причем прирост эффективности бензиновых и дизельных двигателей к 2020 году может составить 30%, а к 2030-му — 50%. Технологии, которые помогут добиться этих результатов, тестируются уже сегодня.

Вездесущее пламя

В далеком 1978 году группа ученых японского института Clean Engine Research, пытавшихся оптимизировать процесс сгорания топлива в двухтактных мотоциклетных моторах, случайно зафиксировала необычный феномен, названный HCCI (Homogeneous charge compression ignition). При достижении определенного давления в камере бензинового двухтактника возгорание топливовоздушного заряда происходило без искры свечи зажигания. Но самое интересное — вместо привычного зажигания смеси около свечи и последующего распространения пламени на периферию в камере одновременно возникало огромное количество микроочагов возгорания. Как следствие, смесь сгорала при более низкой, чем обычно, температуре, очень быстро и практически полностью. Имеющийся в то время математический аппарат и уровень развития термодинамики не позволили понять причины возникновения феномена HCCI, и его посчитали курьезом. Через 20 лет в арсенале инженеров появились мощные средства компьютерного моделирования, которые помогли приоткрыть завесу тайны над HCCI. Работы в этой области в конце 1990-х годов начались в Германии (Mercedes-Benz, Volkswagen), Японии (Nissan) и Америке (General Motors).

Американский инженер Джон Заяц предложил собственную концепцию ДВС, близкую к двигателю с раздельным циклом Scuderi. Изобретатель утверждает, что его двигатель на 15% экономичнее дизеля и на 30% - бензинового аналога по мощности. В двигателе Заяца воздух из цилиндра сжатия попадает в камеру, в которой создается повышенное давление топливной смеси, на 40% больше обычного уровня для бензиновых моторов. Камера, её форма, принцип работы, дизайн и материалы для изготовления защищены 19 патентами. Воздух в ней смешивается с топливом и возгорается. Процесс сгорания смеси по времени намного продолжительней, чем в обычном ДВС. Внутри камеры создается особая среда — «горячая стена», которая является фактически аккумулятором энергии — неизменная температура и давление в ней сохраняются в 10−100 раз дольше, чем в камере сгорания обычного мотора. Затем раскаленные газы через специальный клапан попадают в рабочий цилиндр. Простота, минимимальное количество деталей и эффективность разработки Zajac Motors привлекли пристальное внимание автогигантов. В 2009 году у Заяца появились серьезные партнеры — General Motors и канадская Magna.

Для образования однородного топливовоздушного облака с предельно низкой плотностью в состав смеси вводятся горячие отработанные газы. Они быстро разогревают этот коктейль, облегчая его перемешивание внутри камеры. Если в условиях классического прямого впрыска топливо распыляется в виде аэрозоля, то в HCCI смесь представляет собой мельчайший туман. Когда поршень сжимает смесь до определенного объема, температура подскакивает до точки самовоспламенения. Сгорание HCCI характерно отсутствием открытого пламени и более низкой, чем у дизельных двигателей, температурой. В результате доля сгоревшего топлива вырастает до 95−97% в сравнении с 75% в циклах Отто и Дизеля. Причем на богатых смесях HCCI не работает — ему нужны почти гомеопатические доли топлива, на 30 и более процентов беднее, чем у лучших современных ДВС.

Тем не менее отработанная технология HCCI — пока еще дело будущего. Термодинамика процесса чрезвычайно сложна и требует от ученых решения массы проблем. Главные из них — неустойчивая работа на холостых и максимальных оборотах, неконтролируемая детонация остатков смеси и неравномерность распределения топливовоздушного облака в камере. Правда, в последние месяцы хорошие новости появляются ободряюще регулярно. Специалисты General Motors сообщают, что сумели обуздать стихию на малых оборотах, а британские инженеры из Lotus заявляют, что построили работающий прототип супердвигателя Omnivore, «снизу доверху» поддерживающий процесс HCCI. По мнению вице-президента компании Bosch Хеннинга Шнайдера, автомобили с расходом топлива в пределах 3 л на 100 км, оснащенные ДВС с технологией HCCI, станут серийными уже в 2015 году. У Volkswagen подход более осторожный — компания разрабатывает новый двигатель, работающий с использованием свечей зажигания при полной нагрузке и на холостом ходу, а в среднем диапазоне оборотов — в режиме HCCI. Инженеры Nissan также не стоят на месте — недавно они объявили о создании мощного софта, позволяющего создать компьютерную модель феномена HCCI, и уже начали работать над собственным супердвигателем.


Разделение труда

В пасхальное утро 2001 года инженер Кармело Скудери собрал в своем доме все семейство и торжественно сообщил, что разработал ДВС нового типа, который перевернет мир. Детальное описание технологии поместилось в нескольких рукописных блокнотах — старик не жаловал компьютер и все свои расчеты делал на логарифмической линейке. В 2002 году Кармело, только начав консультации с учеными Университета Саутвест, умер от инфаркта. Дело отца взяли в свои руки дети Скудери, и спустя всего восемь лет действующий прототип двигателя с разделенным циклом (Split-Cycle Combustion SCC) был представлен на Всемирном конгрессе Общества автомобильных инженеров SAE в Детройте. Надо сказать, что концепция разделенного цикла не нова. Еще в 1891 году американская компания Backus Water Motor Company выпускала малыми сериями такие моторы, но они не получили распространения, и идея сто лет пролежала на полке.

В двигателе Отто каждый поршень последовательно совершает такты всасывания, сжатия, рабочего хода и выпуска. В разработке Скудери обязанности по‑братски делятся между парными цилиндрами: один предназначен для впуска и сжатия, другой — для рабочего такта и выпуска отработанных газов. Цилиндры соединяются между собой каналами с клапанным механизмом, по которым сжатая топливовоздушная смесь поступает в рабочий цилиндр. Двигатель Скудери состоит из двух таких пар.

В цикле Отто рабочий ход происходит на каждом втором обороте коленчатого вала, в двигателе Скудери — на каждом. Разделение функций цилиндров позволяет более эффективно использовать каждый из них, например, увеличить ход рабочего поршня и длительность сгорания топлива, не превышая допустимой степени сжатия топлива. Зажигание смеси происходит после того, как рабочий поршень начинает двигаться вниз, в отличие от обычного двигателя с опережением зажигания. Расчеты показывают, что разделение цикла дает гораздо более высокую степень сжатия смеси и быстрое и полное ее сгорание.


В камере сгорания двигателя с системой HCCI (Homogeneous charge compression ignition) одновременно возникает огромное количество микроочагов возгорания. Экологические характеристики HCCI впечатляют. Если процесс сгорания солярки в дизельных двигателях вызывает повышенное образование сажи и окисей азота, то более «холодному» HCCI эти болячки неведомы. По словам Херманна Миддендорфа, руководителя проекта по разработке суперкомпактных бензиновых моторов EA111 компании Volkswagen, агрегаты типа HCCI смогут обойтись без дорогостоящего катализатора.

Сыновья Кармело усовершенствовали конструкцию мотора, добавив к ней баллон со сжатым воздухом. Воздух поступает в рабочий цилиндр, улучшая процесс сгорания смеси. При этом отработанные газы мотора Скудери содержат на 80% меньше углекислого газа и окисей азота, чем у традиционных четырехтактников. КПД мотора Скудери на 5−10% выше, чем у самых продвинутых современных дизельных турбоагрегатов. Добавление наддува увеличивает разрыв по КПД до 25−50%.

В 2008 году двигатель SCC привлек внимание нескольких крупных автопроизводителей, включая PSA Peugeot Сitroёn и Honda, которые подписали со Scuderi Group соглашения о доступе к изучению патентованной технологии. Немецкий Daimler и итальянский Fiat также публично подтвердили высокий интерес к мотору Скудери. Компания Robert Bosch заключила контракт со Scuderi Group на разработку компонентов к SCC в надежде, что однажды эта технология станет серийной. А выдающийся специалист по термодинамике из Массачусетского технологического института профессор Джон Хейвуд назвал разделенный цикл сгорания реальной альтернативой HCCI. Наладить сборку таких ДВС в промышленных масштабах на существующих заводах несложно — никаких экзотических материалов и нестандартных технологических операций для этого не требуется.

Всеядный двухтактник

Многие специалисты по ДВС сегодня делают ставку на механизм изменяемой степени сжатия VCR (Variable Compression Rate). Еще в марте 2000-го инженеры Saab представили прототип автомобиля с экспериментальным бензиновым двигателем 1,6 л с технологией SVC (Saab Variable Compression). Этот мотор выдавал 228 л.с. и 305 Н м крутящего момента, потребляя при этом на 30% меньше топлива, чем обычные аналоги по мощности.


За прошедшие десять лет технология VCR сделала огромный шаг вперед. Французская компания MCE объявила недавно о создании двигателя MCE-5VCR. Степень сжатия в нем изменяется в пределах от 7:1 до 20:1, а расход топлива 1,5-литрового мотора на 30% ниже, чем у аналогов. Американская Envera разрабатывает 4-цилиндровый бензиновый VCR объемом 1,85 л со степенью сжатия от 8,5:1 до 18:1. Работа финансируется Департаментом энергетики США. Целевая мощность мотора составляет 300 л.с.- почти 162 л.с. на 1л объема. Расчетный максимальный крутящий момент превышает 400 Н м при 4000 оборотах вала. Ключевой элемент конструкции — гидравлический актуатор, который поворачивает эксцентрик, связанный с коленвалом двигателя. Качание эксцентрика поднимает и опускает вал относительно головки блока цилиндров, изменяя степень сжатия от 8,5 до 18:1.

Дальше всех в разработке технологии VCR продвинулась знаменитая Lotus Engineering. На Женевском автосалоне в марте 2009 года британцы представили свой концептуальный ДВС Omnivore («Всеядный»). Двухтактный бензиновый мотор с прямым впрыском топлива и изменяемой степенью сжатия от 10:1 до 40:1, по заявлению инженеров Lotus, способен переваривать любое жидкое топливо и при этом экономичен и экологически чист.

Пять тактов, три циллиндра

На выставке Engine EXPO 2009 британская компания Ilmor Engineering представила концептуальный пятитактный ДВС. Идея автора концепции Герхарда Шмитца заключается в использовании четырех- и двухтактной схемы в одном агрегате. Три цилиндра пятитактного ДВС имеют разный внутренний диаметр. Маленькие первый и третий работают по обычному четырехтактному циклу. Средний, низкого давления, — на остаточном расширении отработанных газов в двухтактном режиме. Во время первых трех тактов смесь, как обычно, всасывается, сжимается и совершает рабочий ход в малых цилиндрах. Во время четвертого такта отработавшие газы перемещаются из малых цилиндров в большой и сжимаются. Остаточное расширение выхлопа в большом цилиндре обусловливает пятый, рабочий такт.

Omnivore — это моноблок с цельнолитыми блоком и головкой. Рабочий объем мотора — всего 0,5 л. Одно из главных преимуществ моноблока — отсутствие выработки диаметра цилиндра. В обычных ДВС износ происходит из-за микронных движений болтов в местах крепления головки к блоку. Инновационный улавливающий клапан CTV (Charge Trapping Valve) в выпускном тракте позволяет варьировать время открытия выпускного клапана в широком диапазоне. Система впрыска FlexDI с давлением 6,5 атм для Omnivore создана австралийской компанией Orbital. Она позволяет готовить сбалансированную смесь внутри цилиндра независимо от вида топлива. Такая смесь является базовой для режима HCCI, а система управления впрыском — основой для управления параметрами HCCI.

Механизм изменения степени сжатия Omnivore представляет собой подвижную шайбу в верхней части цилиндра, движущуюся за счет вращения пары эксцентриков. В нижней позиции шайбы степень сжатия достигает 40:1. В шайбу интегрирован один из инжекторов FlexDI, а второй, неподвижный, встроен в корпус цилиндра. Испытания продемонстрировали надежную работу Omnivore в режиме HCCI во всем диапазоне оборотов, при этом он с солидным зазором уложился в рамки нормативов Евро-6.

Почему британцы взялись за двухтактную конфигурацию? «Lotus Engineering, как и многие другие автокомпании, долго придерживалась четырехтактных концепций. Это следствие исторического доминирования таких агрегатов. Проблема таких ДВС — неэффективное сжигание топлива на частичных и экстремальных нагрузках. Двухтактники не страдают этим недугом и потому крайне интересны для автоиндустрии. Кроме того, они не требуют компактизации», — поясняет Джейми Тернер, главный инженер Lotus Engineering. По оценкам Lotus, коммерциализация Omnivore займет еще полтора-два года.

Все изобретённые до сегодняшнего дня двигатели внутреннего сгорания, при всей своей разнообразности, хотя и сильно совершенствуются, не приносят желаемого результата.

Достижения современной науки уже подходят к новому техническому решению и разрабатывают двигатели с изменяемой степенью сжатия, которые способны работать на любом виде топлива. Правильным направлением в автомобилестроении является также то, что они делаются гибридными, состоящими из генератора и двигателя с облегчённой массой кузова. С этим можно полностью согласиться, так как у меня тоже есть такие изобретения и это правильное направление, но это всего лишь полумеры для достижения хороших экономичных и тактико-технических результатов.

В новом изобретении я могу предложить не только двигатель с плавной изменяемой и регулируемой степенью сжатия способного работать на любом виде топлива, но и двигатель, который будет сложно назвать двухтактным, так как за один рабочий ход поршня вал двигателя может совершать более одного оборота в минуту.

Новый двигатель тоже будет работать с изменяемой степенью сжатия на любом виде топлива, у которого процесс сжатия и выброс газа будут объединены в одном цикле. Главным преимуществом перед всеми существующими новый двигатель будет иметь плавное и регулируемое сжатие газовой смеси в поршнях, которое будет осуществляться от массы автомобиля, что не делалось в этом мире до сегодняшнего дня и это сделает двигатель ещё более мощным, экономичным и экологически чистым. Для такого двигателя нет проблем, чтобы создать давление в поршне от 1 до 100 кг. Просто к этому изобретению уже сейчас нужны новые технологии и новые материалы.

Данное техническое решение не будет оформлено в виде заявки на изобретение. Сейчас все перешли на рыночные отношения, поэтому для меня не выгодно бесплатно раздавать прогрессивные идеи. Эта проблема заключается даже не только в том, что дорогие пошлины при подаче заявки на изобретение, но и после получения патента большинство изобретателей в Российской Федерации не в состоянии поддерживать свои патенты даже у себя в стране. Эти патенты в дальнейшем становятся достоянием для производства и использования в других странах. Я, как и многие изобретатели тоже не могу поддерживать свои патенты не только за рубежом, которых у меня нет, но и у себя в стране.

Сейчас молодые учёные, студенты или пенсионеры желающие, что-либо изобрести, сталкиваются с большими проблемами. Зачем изобретателю родившего новую идею нужно воплотить её в виде изобретения, защитить в виде патента, и не только в России, но и за рубежом, так как в соседних Государствах его могут выпускать и даже не спрашивать изобретателя. Для того чтобы начать вести диалог с заказчиком, изобретатель должен не только, удостоверить его в том, что данное изобретение является новыми никем не используется, но и предоставить согласно п. 2.2 лицензионного договора, необходимую и достаточную для использования изобретения по п. 2.1 техническую и иную документацию, а также оказать технологическую и другую помощь, а при необходимости, поставить образцы, материалы и специальное оборудование. При этом здесь ещё не указано, что изобретатель перед всем этим должен будет выплатить:

За подачу заявки на изобретение 1650 рублей,

За выдачу патента на изобретение 3250 рублей,

За рассмотрение заявки экспертизой по существу 2450 рублей,

За проведение информационного поиска по одному объекту 6500 рублей.

Произвести за свои средства НИОКР,

Разработать оснастку для данного изобретения,

Произвести конструкторско-техническую документацию,

Приобрести материал и изготовить опытный образец изобретения,

Произвести испытание опытного образца заявленного изобретения,

Сообщить заказчику, что изобретение новое и никем не используется,

Сообщить заказчику о сроках окупаемости проекта по этому изобретению,

Произвести уплату всех пошлин и промежуточных выплат за поддержание патента и так далее…

Если у изобретателя не будет защиты в виде патента на изобретение, то с изобретателем никто не будет говорить. При этом необходимо особо подчеркнуть, что заказчик должен выплатить за использование исключительной или неисключительной лицензии на изобретение всего 1650 рублей, а сколько получит за это изобретатель…

Смотрите подтверждение, что исключительная и неисключительная лицензия на использование изобретения стоит 1650 рублей и делайте выводы сами...

В научной среде новые законы и патентные пошлины создали полный дисбаланс отношений между изобретателем, патентным ведомством, производителями и потребителями. Не хочу переводить данные отношения на медицинский уровень, но он выглядит так - когда независимая голова не отвечает что делает её правая рука или левая нога. В такой обстановке мне самому легче купить лицензию у тех, кто принимал такие законы и патентные пошлины, чтобы из категории бедных не переходить в разряд нищих.

Сейчас все перешли на рыночные отношения, поэтому нам изобретателям или учёным нужно делать то же самое. Необходимо сотрудничать по своим изобретениям на договорной основе только с крупными компаниями имеющие не только свои лаборатории, материальную и техническую базу, но и коллектив единомышленников с которыми можно будет довести любое изобретение до серийного выпуска. Будем надеяться на хорошее будущее...


Универсальный двигатель Белашова

Предназначен для использования в качестве силового привода в любых отраслях народного или военного хозяйства. В универсальном двигателе применена система регулирования объёма и сжатия смеси, где степень сжатия определяется отношением полного объёма основного цилиндра и дополнительного цилиндра к объёму камеры сгорания, для работы двигателя от любых моторных топлив или газов, что позволяет создать экологически чистый двигатель внутреннего сгорания, увеличить к.п.д., мощность, экономичность двигателя внутреннего сгорания и снизить его тепловые потери.

Универсальный двигатель внутреннего сгорания, содержит кривошипно-шатунный механизм, газораспределительный механизм, систему питания, зажигания, смесеобразования, которые размещены в цилиндре поршня с камерой сгорания и головкой, систему регулирования объёма и сжатия смеси, причём головка поршня выполнена в виде цилиндра с крышкой, внутри которого расположена свеча и форсунка. Устройство пропускного переключения, впускной и выпускной клапаны взаимодействует с внутренней поверхностью камеры сгорания поршня, выполненной в виде стакана. Между цилиндром блока и цилиндром головки поршня размещена дополнительная камера, система регулирования объёма и сжатия смеси, которая связана с дополнительной камерой. Управление, открытие и закрытие клапанов системы регулирования объёма и сжатия смеси осуществляется от поршня, распределительного вала, регулятора частоты вращения или автоматической муфты. Внутренняя полость поршня и нижнее основание головки поршня, которые связаны с камерой сгорания, выполнены из прочного термостойкого соединения и имеют жаропрочную прокладку. Устройство пропускного переключения выполнено в виде пропускного клапана, связанного с системой смесеобразования. Система смесеобразования камеры сгорания выполнена в виде дефлектора с каналами, спиралевидных канавок, преимущественно переменного сечения с отверстиями, экрана, форсунки.

Универсальный двигатель повышает экономичность и мощность двигателя внутреннего сгорания, при использовании любых моторных топлив или газов, за счёт применения системы регулирования объёма и сжатия смеси, а также снижает тепловые потери при применении поршня и головки поршня, выполненных из термостойкого соединения имеющего жаропрочную прокладку. При работе универсального двигателя масляная плёнка на цилиндре блока и цилиндре головки поршня не контактирует с камерой сгорания, что никогда не вызовет закоксовывание и пригорание поршневых колец, загрязнение моторного масла и увеличит рабочий ресурс двигателя. При капитальном ремонте универсального двигателя, достаточно отсоединить головку поршня от головки блока и вставить новый блок, что намного упростит и удешевит его конструкцию. При работе системы регулирования объёма и сжатия смеси и системы смесеобразования, при работе от любого моторного топлива достигается высокая интенсификация и стабилизация процесса сгорания в поршне, что позволяет создать экологически чистый двигатель внутреннего сгорания.


Универсальный роторный двигатель Белашова

Универсальный роторный двигатель Белашова, выполнен в виде отдельного модуля, Каждый модуль содержит маховиковый ротор, кулачково-эксцентриковый механизм, с которым взаимодействует поршень, возвратный механизм поршня, механизм установки рабочего давления, выходное сопло, через которое происходит выпуск отработанных газов, систему отражателей, выполненную в виде углублений и выступов, взаимодействующих с отверстиями выходного сопла, систему торцевых уплотнителей, взаимодействующих с маховиковым ротором и корпусом, систему ввода и впрыскивания воды или химических компонентов. Механизм установки рабочего давления связан с устройством пропускного переключения, выполненного в виде пропускного клапана и пружины, которая взаимодействует с системой ввода и впрыскивания химических компонентов. В зависимости от способа образования горючей смеси и вида применяемого топлива универсальный роторный двигатель преобразует тепловую энергию в механическую работу непосредственно на самом маховиковом роторе.


Универсальный реактивно-роторный двигатель Белашова

Работает от любых моторных топлив или газов. В процессе работы (для увеличения температуры рабочих газов) можно дополнительно использовать твердое мелкоизмельчённое топливо. Например, каменный уголь с воздушной или газообразной смесью, а для увеличения объёма рабочих газов в роторном двигателе используется вода или жидкие отходы.

Область применения - судостроение, машиностроение, передвижные энергетические модули, промышленные предприятия, энергетика и транспорт, в качестве экологически чистых двигателей малой, средней или большой мощности. В военных целях, для утилизации отравляющих веществ и бактериологического оружия массового поражения.

Преимущества универсального реактивно-роторного двигателя Белашова:

Малые габариты и вес,

Модульная конструкция,

Высокий коэффициент полезного действия,

В двигателе отсутствует система охлаждения,

В двигателе нет кривошипно-шатунного механизма,

Рабочая часть ротора автоматически очищается от нагаровых отложений и утилизируется от вредных соединений.

С изобретением универсального роторно-поршневого вакуум-насоса Белашова, который может одновременно создавать большое давление и большое разряжение в одном цикле, задача по обеспечению бесперебойной работы универсального реактивно-роторного двигателя Белашова решается очень просто:

Удешевляется конструкция реактивно-роторного двигателя,

Упрощается конструкция реактивно-роторного двигателя,

Двигатель становится лёгким в обслуживании и ремонте,

Увеличивается к.п.д. реактивно-роторного двигателя,

Уменьшается масса реактивно-роторного двигателя,

Упрощается режим приготовления рабочей смеси,

Уменьшается перечень комплектующих деталей,

Создаётся постоянное избыточное разряжение,

Создаётся постоянное избыточное давление,

Впрыск рабочей смеси и её воспламенение на маховиковом роторе может происходить в импульсном или постоянном режиме, - в двигателе нет необходимости иметь систему зажигания рабочей смеси, так как с этим может справиться простая нить накаливания, которая может быть включена постоянно.

Прогрессивное техническое решение, которое направлено на создание реактивно-роторных, экономичных и экологически чистых гибридных двигателей внутреннего сгорания, которые работают на водородном топливе, достигая высокую степень интенсификации и стабилизации процесса сгорания водорода, при добавлении воды или водяного пара. При этом в реактивно-роторном двигателе можно в широких пределах изменять объём и сжатие рабочей смеси.

Универсальный реактивно-роторный двигатель Белашова способен работать от любых моторных топлив или горючих газов. В процессе работы в двигатель можно добавлять любые присадки, воду или водяной пар, которые увеличивают объём рабочего тела и уменьшают загрязнение окружающей среды, улучшают работу двигателя, увеличивает его экономичность, мощность и к.п.д.. Универсальный реактивно-роторный двигатель выполнен в виде модуля, у которого все системы, детали, узлы и механизмы являются идентичными и взаимозаменяемыми, что облегчает процесс изготовления и ремонта каждого модуля, а также уменьшает его себестоимость. Смотрите комментарий по по универсальному реактивно-роторному двигателю Белашова.


Добросовестно работают на благо человека. Совершенствование моторов происходит постоянно. То конструкторы борются за увеличение мощности, то снижают массу двигателя. На развитие моторостроения оказывают влияние такие факторы, как перепады цен на нефть и ужесточение экологических норм. Несмотря на все эти сложности, являются основным источником энергии для автомобилей.

В последнее время появилось много новых разработок, которые направлены на совершенствование традиционных моторов. Некоторые их них находятся уже на стадии внедрения, другие новинки имеются только в виде опытных образцов. Однако пройдет немного времени и часть этих инноваций будут реализованы в новых машинах.

Лазеры вместо свечей зажигания

Еще недавно лазеры считались фантастическими приборами, о которых обычные люди узнавали из фильмов о марсианах. Но уже сегодня имеются разработки, направленные на замену лазерными устройствами. Традиционные свечи имеют один недостаток. Они не дают мощной искры, которая способна поджечь топливную смесь с большим количеством воздуха и малой концентрацией топлива. Повышение мощности приводило к быстрому износу электродов. Очень перспективно выглядит применение лазеров для воспламенения обедненной топливной смеси. Среди преимуществ лазерных свеч следует отметить возможность регулировки мощности и угла зажигания. Это позволит сразу не только повысить мощность двигателя, но сделать процесс сгорания более эффективным. Первые керамические лазерные приборы разработали инженеры в Японии. Они имеют диаметр 9 мм, что подходит для целого ряда автомобильных моторов. Новинка не потребует существенной доработки силовых агрегатов.

Инновационные роторные двигатели


В ближайшем будущем из могут пропасть поршни, распредвалы, клапаны. Ученые Мичиганского университета работают над созданием принципиально новой конструкции автомобильного мотора. Силовой агрегат будет получать энергию под действием взрывных волн, поддерживающих движение. Одной из основных деталей новой установки является ротор, в корпусе которого имеются радиальные каналы. При быстром вращении ротора топливная смесь проходит по каналам и мгновенно заполняет свободные отсеки. Конструкция позволяет заблокировать выходные порты, и горючая смесь не вытекает во время сжатия. Так как топливо попадает в отсеки очень быстро, происходит образование ударной волны. Она проталкивает порцию топливной смеси в центр, где происходит воспламенение, а затем и выхлоп отработанных газов. Благодаря такому оригинальному решению исследователям удалось сократить потребление топлива на 60%. Снизилась и масса мотора, что привело к созданию легкого автомобиля (400 кг). Достоинством нового мотора будет и малое количество трущихся деталей, поэтому ресурс двигателя должен увеличиться.

Разработка Scuderi


Сотрудники компании Scuderi подготовили свою версию двигателя будущего. Он имеет два типа поршневых цилиндров, что позволяет более эффективно использовать образующуюся энергию.
Уникальность разработки заключается в соединении двух цилиндров при помощи перепускного канала. В результате один из поршней создает компрессию, а во втором цилиндре происходит воспламенение топливной смеси и выброс газов.
Такой способ позволяет использовать экономнее выработанную энергию. Компьютерные модели показывают, что расход топлива в двигателе Scuderi будет меньше на 50%, чем у традиционных ДВС.

Двигатель с тепловым разделением

Повысить КПД двигателя Scuderi удалось благодаря тепловому разделению мотора на 2 части. В обычном четырехтактном двигателе остается нерешенной одна проблема. Разные такты лучше работают в определенных температурных диапазонах. Поэтому ученые решили разделить двигатель на два отсека и поставить между ними радиатор. Работа мотора будет происходить по следующей схеме. В холодных цилиндрах будет происходить впуск топливной смеси и ее сжатие. Таким образом достигается максимальная эффективность в холодных условиях. Процесс сгорания и выхлоп газов происходит в горячих цилиндрах. Предположительно данная технология обеспечит экономию топлива в пределах 20%. Ученые планируют доработать данный вид мотора и добиться 50%-ной экономии.

Мотор Skyactiv-G от Mazda


Японская компания Мазда всегда стремилась создавать инновационные двигатели. Например, некоторые серийные автомобили оснащаются роторными силовыми агрегатами. Теперь конструкторы автоконцерна основательно занялись экономией топлива. Уже в следующем году планируется выпустить автомобиль с двигателем Skyactiv-G. Он будет первой моделью из семейства Skyactiv. На малолитражной версии Mazda2 будет устанавливаться спортивный двигатель Skyactiv-G объемом 1,3 л. Распределять крутящий момент будет вариаторная коробка передач. Силовая установка отличается высокой степенью сжатия, благодаря чему достигается экономия топлива в пределах 15%. Разработчики утверждают, что средний расход бензина составит около 3л/100 км.


Оппозитными моторами комплектовали свои машины разные автопроизводители. Данная конструкция не лишена изъянов, над которыми инженеры продолжают работать. Как известно, в оппозитном двигателе цилиндры расположены горизонтально, и поршни перемещаются в противоположных направлениях. Конструкторы EcoMotors разместили в каждом цилиндре по два поршня, которые направлены друг к другу. Коленчатый вал находится между цилиндрами, а для перемещения поршней в одном цилиндре используются шатуны разной длины. Такое расположение поршневой группы позволило снизить вес двигателя, так как не требуются массивные головки блока цилиндров. Существенно меньше и ход поршней в оппозитном агрегате, чем в традиционном бензиновом моторе. По мнению инженеров EcoMotors, автомобиль с двигателем OPOC должен потреблять около 2 л бензина на 100 км пути.

Силовой агрегат Pinnacle


Еще одна перспективная разработка сделана на базе оппозитного двигателя. В моторе Pinnacle два поршня двигаются навстречу друг другу, находясь в одном цилиндре. Между ними и происходит воспламенение топливной смеси. Двигатель имеет два коленчатых вала и одинаковой длины шатуны. Данная конструкция позволяет получить колоссальную экономию энергии при низкой себестоимости силового агрегата. Предполагается, что эффективность бензинового двигателя удастся увеличить на 50%. По всей планете ученые ищут новые подходы к созданию мощных, экономных и экологичных моделей ДВС. Отдельные разработки выглядят достаточно перспективно, у других будущее не такое безоблачное. Однако только время рассудит, кто будет купаться во славе, а чьи разработки попадут на пыльные полки архива.

Новые технологии направлены на то, чтобы сделать двигатели внутреннего сгорания более эффективными. В предыдущие годы они стали повсеместными, а в будущем станут «умными». К сожалению, пока они не обладают высоким КПД и неэкономичны. Но пользуясь последними достижениями в области материалов и электроники, вполне возможно исправить эти недостатки.

Автомобильный концерн Мазда часто предлагает интересные инновационные решения. Один из вопросов, которыми он решил заняться ─ экономия топлива. Компания разработала новые двигатели Skyactiv-G. Уже планируются к выпуску малолитражные автомобили Mazda 2, оснащенные ими. Они обладают высочайшей степенью сжатия, за счет чего и повышается топливная экономичность. По версии разработчиков, средний расход бензина будет составлять примерно 3 литра на сотню километров.

Электронный клапан

Данный двухтактный двигатель разработан корпорацией Grail Engine Technologies. Он выполнен из простых деталей, изготовленных методом отливки.

Преимущества:

  • изготовлен в соответствии с экологическими стандартами;
  • потребляя от трех до четырех литров на «сотню» выдает 200 л.с.;
  • возможна установка на гибридные автомобили.

Лазеры

Новые технологии в двигателях внутреннего сгорания стали возможны с появлением лазеров. Стандартные свечи имеют серьезную проблему. Она заключается в необходимости сильной искры, но в таком случае идет быстрый износ электродов. Решить этот вопрос можно, если применять лазеры для воспламенения топлива. Они имеют преимущество, так как позволяют задавать важные параметры: угол зажигания и мощность.

Учеными разработаны керамические лазеры d 9 мм. Они подойдут для подавляющего большинства моторов.

Pinnacle

Одной из перспективных разработок являются двигатели Pinnacle.В них поршни располагаются противоположно относительно друг друга, находясь в одном цилиндре. Между ними и воспламеняется топливо. Подобное их расположение значительно экономит энергию и увеличивает эффективность двигателя. При этом стоимость силового агрегата достаточно низкая.

Эти двигатели принципиально отличаются от распространенных оппозитных моделей, использующихся повсеместно.

Iris

Это двухтактный двигатель с изменяемой геометрией и площадью поршня. Он легок и компактен, а его КПД составляет 45%.

Изобретатель Iris Тимбер Дик придумал концепцию с шестью поршнями, полезная площадь которых в три раза больше, чем в стандартной паре. Каждый поршень представляет собой стальной, изогнутый лепесток.

Алгоритм работы:

  • поступление воздуха через камеру сгорания;
  • смыкание лепестков к середине камеры и сжимание воздуха;
  • раздвижение поршней и поворот валов;
  • впрыскивание топлива и зажигание;
  • открытие выпускных клапанов.

Разделение радиатором

Особенность инновации в том, что используется разделение мотора радиатором на две части. Впуск и сжатие топлива осуществляется в холодных цилиндрах, а сгорание и выхлоп газов – в горячих. При таком функционировании агрегата получается экономия около 40%. Ученые все еще дорабатывают и совершенствуют данную систему, чтобы добиться еще большей экономии (до 50%).

Scuderi

Это двигатель разделенного цикла Air-Hybrid разработан американской компанией Scuderi Group. Он более экономичен, если сравнивать с обычными аналогами. Сотрудники компании рассчитывают, что их изобретение станет настоящим прорывом. Они уже получили на него патент. Для наиболее рационального использования энергии он разделяет 4 стандартных поршневых цилиндра на рабочие и вспомогательные. Это делается для того, чтобы разумно использовать энергию, которую они будут вырабатывать. Механизм функционирования основан на соединении двух цилиндров при помощи специального канала. Далее происходит впрыскивание сжатого воздуха во второй цилиндр с последующим воспламенением топливовоздушной смеси и выхлопом.

Экомотор

Компания Eco Motors International переработала конструкцию двигателя внутреннего сгорания, применив творческий подход. Он получился двухтактный, с элегантной и простой конструкцией. Пара модулей (по четыре поршня в каждом) соединены муфтой и имеют электронное управление.

Турбокомпресс утилизирует энергию выхлопных газов и участвует в выработке электроэнергии.

Достоинства:

  • легкость;
  • низкий расход топлива;
  • небольшие производственные затраты;
  • масштабируемость (при добавлении нескольких модулей двигатель малолитражного автомобиля превращается в мотор для грузовика).

Работа двигателя возможна на бензине, дизеле, этаноле.

Роторные двигатели

Американские ученые разрабатывают еще одну интересную инновацию автомобильного мотора. Его ресурс будет более высокий, чем у обычных моделей. Механизм действия:

  1. Получение энергии под воздействием взрывных волн.
  2. Вращение ротора, прохождение топлива по каналам.
  3. Образование ударной волны.
  4. Воспламенение и выхлоп отработанных газов.

Ученые в 2018 году продолжают искать новые технологии для производства экономичных и экологичных моделей двигателей внутреннего сгорания. Многие проекты еще находятся на стадии разработок и ждут финансирования.