Устройство автомобиля из чего состоит. Автомасла и все, что нужно знать о моторных маслах

Автомобилем называется самодвижущаяся машина, предназначенная для перевозки по безрельсовому пути пассажиров, различных грузов или специального оборудования и буксирования прицепов. Основные части автомобиля: двигатель, трансмиссия, ходовая часть, кузов, механизмы управления и вспомогательное оборудование (рис. 2.1).

Двигатель - это машина, преобразующая какой-то вид энергии в механическую. Основное распространение получили двигатели внутреннего сгорания (ДВС).

Двигатель внутреннего сгорания преобразует химическую энергию топлива, сгорающего в его цилиндрах, в тепловую энергию, а затем при помощи кривошипно-шатунного механизма - в механическую, которая приводит во вращение ведущие колеса автомобиля. Наибольшее распространение получили бензиновые двигатели и дизели. Последние позволяют снизить расход топлива на 25-30%. Значительное внимание уделяется созданию двигателей, работающих не на нефтяных топливах. Одним из них является водород, запасы которого практически не ограничены. Однако применение водорода связано с большими энергетическими затратами, затруднениями в хранении и транспортировании. Широкому применению электродвигателей препятствуют малая энергоемкость источников энергии, в основном - аккумуляторных батарей, и их громоздкость, что снижает грузоподъемность автомобиля и запас его хода.

Трансмиссия служит для передачи вращающего момента от коленчатого вала двигателя к ведущим колесам автомобиля и изменения его величины и направления. В нее входят следующие механизмы: сцепление 3, коробка передач 4, карданная передача 5, ведущий мост 6 (см. рис. 2.1).

Сцепление предназначено для передачи энергии двигателя, плавного трогания автомобиля с места, кратковременного разъединения двигателя и трансмиссии при переключении передач и предотвращения воздействия на трансмиссию больших динамических нагрузок.

Рис. 2.1

7 - кабина; 2 - грузовая платформа; 3 - сцепление; 4 - коробка передач; 5 - карданная передача; б - главная передача (ведущий мост); 7 - рама

На автомобилях в большинстве случаев применяют фрикционные сухие дисковые постоянно замкнутые сцепления с пружинным нажимным устройством.

Коробка передач используется для изменения силы тяги на ведущих колесах, изменения скорости и направления движения, а также длительного отключения двигателя от трансмиссии.

Наибольшее распространение получили механические шестеренные ступенчатые коробки передач. С целью облегчения и автоматизации управления, а также повышения долговечности на легковых автомобилях и, особенно, автобусах применяют автоматические гидромеханические передачи.

Карданная передача передает вращающий момент между несоосными валами, обеспечивая угловую и осевую компенсацию при изменении расстояния между ними.

Ведущий мост воспринимает силы, действующие между опорной поверхностью и рамой или кузовом автомобиля, в том числе силы тяги и торможения. Редуктор ведущего моста - главная передача - преобразует по величине вращающий момент, передаваемый от коробки передач.

Ходовая часть служит для преобразования вращательного движения ведущих колес в поступательное движение автомобиля. Она состоит из рамы, на которой устанавливают кузов и все механизмы автомобиля, подвески передней и задней осей и колес.

Кузов служит для размещения водителя, пассажиров и груза. У грузового автомобиля он состоит из грузовой платформы 2 и кабины 1 (см. рис. 2.1).

Механизмы управления предназначены для управления автомобилем. К ним относятся рулевое управление, с помощью которого изменяют направление движения автомобиля, и тормозная система, позволяющая уменьшить скорость или остановить автомобиль.

Трансмиссию, ходовую часть и механизмы управления в сборе называют шасси.

К вспомогательному оборудованию относят лебедку, тяговосцепное устройство и другое дополнительное оборудование.

Современный автомобиль напичкан множеством примочек и апгрейдов . В этой статье мы попробуем разобраться во внутренностях автомобиля, а именно, в его устройстве и конструкции. Какие детали служат для комфорта, какие необходимы для езды, а какие – для безопасности. Ниже представлен список комплектующих, на которые можно разделить все устройства и кузовные части автомобиля:

  1. Несущая конструкция автомобиля.
  2. Трансмиссия.
  3. Электрооборудование.
  4. Двигатель.
  5. Система управления автомобилем.

Общие сведения об устройстве автомобиля

Несущая система автомобиля

Она является скелетом автомобиля, к которому в последующем крепятся все детали. Именно от нее зависит срок службы автомобиля, и именно на несущую систему приходятся все нагрузки, которым подвергается автомобиль во время движения. Отсюда и ценовое соотношение если определить стоимость всего автотранспорта в 100%, то 50% будет приходиться именно на эту систему. Условно ее можно разделить на несколько видов:

  1. Рамная несущая система. Преимущество этой системы в простоте, как производства, так и ремонта. Кроме того, рамная несущая система позволяет выпускать шасси, различные по модификации автомобиля.
  2. Кузовная несущая система. Данная система позволяет понизить массу автомобиля, снизить центр тяжести, а значит, повысить устойчивость при движении. Есть, конечно, у нее и недостаток – это достаточно плохая изоляция шумов извне.
  3. Рамно-кузовная система. Применяется исключительно на автобусах. Состоит из соединенных между собой деталей рамы и кузова. Является довольно простой при ремонте и производстве.

Важность трансмиссии

Следующий элемент, который мы рассмотрим, – это трансмиссия. Это силовая передача, осуществляющая взаимосвязь двигателя с ведущими колесами автомобиля. Различают несколько видов трансмиссии: механическая (наиболее распространена), электрическая, гидрообъемная и комбинированная. На примере механической трансмиссии рассмотрим работу различных узлов, входящих в ее состав:

  1. Сцепление. Главной задачей является мягкое соединение маховика, первичного вала коробки передач. В состав сцепления входят следующие составные корзина и диск сцепления, а также выжимной подшипник.
  2. Коробка передач. Она предназначена для преобразования крутящего момента и дальнейшая его передача к карданному валу. Двигатель усиливается за счет вторичного вала. Среди коробок передач имеется разделение на механический и автоматический вид.
  3. Карданный вал (для автомобилей с задним приводом), передающий крутящий момент от вторичного вала к главной передаче.
  4. Соединение дифференциала и главной передачи представляет собой так называемый мост, который передает силу двигателя к колесам через полуоси.
  5. Полуось (приводной вал) – металлический стержень с устройством сцепления с дифференциалом и ШРУСом.
  6. Шарнир равных угловых скоростей (ШРУС) осуществляет подачу силы вращения на ведущие колеса.
  7. Раздаточный механизм распределяет усилия двигателя по ведущим колесам. Данный узел применяется в авто с колесной формулой 4*4.

Схма электрооборудования автомобиля – ВАЗ 2109

Электрооборудование автомобиля

Далее идет электрооборудование, которое представляет собой совокупность электрических приборов и аппаратов, обеспечивающих нормальную работу двигателя. Электрическая энергия необходима для запуска автомобиля, воспламенения горючей смеси, освещения, сигнализации, дополнительной аппаратуры. В состав электрооборудования входят источники и потребители тока. Источниками электрооборудования являются:

  1. Генератор – служит для преобразования механической энергии, получаемой от двигателя в электрическую энергию;
  2. Регулятор напряжения – выполняет функцию стабилизатора, держит на постоянном уровне напряжение тока, который вырабатывается генератором при изменяющейся частоте вращений коленчатого вала двигателя;
  3. Аккумуляторная батарея (аккумулятор) – необходим для преобразования химической энергии в электрическую энергию.

Потребителями тока являются:

  1. Стартер – служит для обеспечения вращения коленчатого вала частотой необходимой для пуска двигателя;
  2. Система зажигания – в процессе своей работы осуществляет воспламенение топлива в цилиндрах в порядке рабочего режима двигателя;
  3. Система освещения – вспомогательная служба, обеспечивающая работу авто в условиях пониженной видимости;
  4. Система сигнализации – служит для обеспечения безопасности движения автомобиля.

Следующее, что мы рассмотрим, – это двигатель. Он являет собой комплекс механизмов, которые преобразуют тепловую энергию сгорающего в его цилиндрах топлива в механическую. Двигателя делят по многим параметрам. Во-первых, по виду топлива: бензиновые и дизельные. Во-вторых, по воспламенению горючей смеси: от электрической искры и от сжатия. В-третьих, по числу цилиндров: 2-ух, 3-ех, 4-ех, 5-ти, а также 6-ти и 8-ми цилиндровые и многоцилиндровые. В-четвертых, по расположению цилиндров: рядные и V-образные. Рабочий процесс двигателей состоит из тактов впуска, сжатия, рабочего хода и выпуска.

Механизмы и системы двигателя

Распределяют следующие механизмы и системы двигателя. Рабочий процесс двигателя главным образом осуществляется благодаря работе кривошипно-шатунному механизму. Открытие и закрытие впускных и выпускных клапанов двигателя производится за счет газораспределительного механизма. Подачу масла к трущимся деталям двигателя производит смазочная система. Охлаждение сильно нагретых деталей двигателя происходит за счет специальной системы охлаждения, которая отводит теплоту. Система питания подготавливает горючую смесь для двигателя и обеспечивает выход из двигателя отработавших газов. Воспламенение горючей и рабочей смеси в цилиндрах двигателя происходит благодаря системе зажигания.

Работа ходовой части

Ходовая часть – это комплекс устройств, при взаимодействии которых осуществляется перемещение автомобиля по дороге. Сюда входят колеса, а также задняя и передняя подвески. Через колеса осуществляется связь транспорта с дорогой. Главными задачами колес является передвижение по поверхности и изменение направления движения. Колеса различают по типу конструкции (дисковые, бездисковые, спицевые) и по назначению (ведущие, управляемые, комбинированные, поддерживающие). Колеса автомобиля могут быть с глубокими ободами или соединительными деталями, по внешнему виду напоминающими диски и спицы. Эти самые ободья необходимы для установки пневматической шины. Именно за счет ступицы осуществляется крепление колеса к мосту и его способность вращаться. За счет подвески происходит упругая связь колес и несущей системой. Подвеска выполняет две функции. Первая – повышение безопасности движения автомобиля, а вторая – это плавный ход автомобиля.

Типы подвески

Подвески делятся на следующие типы:

  1. Зависимая подвеска – это когда колеса одного из мостов взаимосвязаны друг с другом посредством жесткой балки. Следовательно, при движении они взаимосвязаны.
  2. Независимая подвеска – это когда колеса одного из мостов не связаны между собой, а подвешены независимо по отношению друг к другу, а следовательно и перемещение любого из колес не вызывает перемещения другого. Общими частями всех подвесок являются:
  3. Элементы, обеспечивающие упругость;
  4. Элементы, распределяющие направление силы;
  5. Гасящий элемент;
  6. Элементы, стабилизирующие поперечную устойчивость;
  7. Крепеж.

Работа подвески

Рассмотрим их более подробно. Элементы, которые обеспечивают упругость между неровностями на дороге и кузовом автомобиля, являются, так сказать, буфером. Сюда относятся пружины, рессоры, торсины. Жесткость пружин бывает постоянной и переменной. Рессоры визуально представляют из себя несколько металлических пластин взаимно связанных между собой, а также они довольно упруги по свойствам. Торсины внешне выглядят как металлическая труба, а внутри располагаются стержни.

Устройства для распределения силы

Устройства, распределяющие направление силы, в свою очередь, выполняют несколько задач. Во-первых, крепление подвески к кузовной части автомобиля. Во-вторых, передача силы на кузовную часть автомобиля. В-третьих, правильное расположение колес по отношению к кузову в горизонтальной и вертикальной плоскостях. Задачей гасящего элемента является противодействие элементам упругости, а если быть точнее, – сглаживание упругости. Стабилизационные устройства поперечной упругости распределяют боковую нагрузку автомобиля при изменении траектории движения. Все составные части подвески крепятся к кузовной основе и к опорным частям колес.

Система управления автомобилем

Под самой системой понимается совокупность устройств и механизмов, предназначенных для изменения скорости авто и изменения направления движения. Под устройствами изменения направления движения скрывается не что иное, как рулевое управление, применяющееся для нормального управления авто. Под системой изменения скорости, в свою очередь, понимается тормозная система, являющаяся главным узлом безопасности водителя и пассажиров. В комплектацию рулевой системы входят:

  1. Руль;
  2. Рулевой вал с крестовиной, который с одной стороны имеет шпицы для фиксации руля, а с другой шпицы – для крепления к рулевой колонке;
  3. Рулевая колонка, устройство, собранное в одном корпусе, в состав которого входит червячная ведущая шестерня и ведомая, рулевой тяги, состоящие из наконечника и маятника.

Работа рулевого механизма

Рассмотрим более детально рулевой механизм в работе: во время вращения рулевого колеса усиливается вращение червячного механизма колонки, который, в свою очередь, начинает вращать ведомую шестерню, приводящую в работу рулевую сошку. Она имеет крепление к средней рулевой тяге, а другой конец тяги соединяется с маятниковым рычагом. Он устанавливается на опоре и имеет жесткое крепление к кузову авто. От сошки с маятником отходят боковые тяги. Наконечники соединены со ступицей. Рулевая сошка, когда поворачивается, посылает усилие сразу на боковую тягу и средний рычаг. Средний рычаг, в свою очередь, дает начало действию второй боковой тяге, в результате чего ступицы поворачиваются, а, следовательно, и колеса вместе с ними. Главной задачей системы торможения является возможность управления скорость авто.

Системы торможения

Существует три варианта системы торможения: рабочая, стояночная, запасная. Основным узлом управления автомобилем и сохранения его в безопасности является рабочая тормозная система. Во избежание произвольного движения авто во время долгой стоянки на участках с наклоном дороги используют стояночный тормоз (ручник). Относительно молодой является запасная тормозная система, используемая для торможения ввиду неисправности рабочей тормозной системы. Из-за того, что пользование ручником при движении исключено, водитель с помощью рычага запасной системы с легкостью блокирует колеса, и транспорт останавливается.

Принцип действия тормозной системы

Данная система торможения может являться отдельным узлом или частью рабочей тормозной системы. Система торможения автотранспорта построена на эффекте трения. Именно вследствие трения между движущейся и находящейся в неподвижности деталью происходит такое явление, как торможение. Ниже рассмотрим непосредственно сам процесс тормоза. Во время процесса торможения возникает эффект трения между тормозными колодками и тормозным диском или тормозным барабаном, который находится в движении. Вследствие чего тормозные системы стало принято делить на дисковые и барабанные. В наше время стало принято использование результата симбиоза этих систем торможения, а именно, их сочетание. Хотя, может быть иначе, тут все зависит от решения конструкторов.

Вот, в принципе и все основные устройства и конструкции автомобиля. Конечно, можно еще много всяких мелочей и деталей упомянуть и вспомнить, но именно вышеупомянутые устройства и конструкции являются основными в автомобиле.

Материал из Энциклопедия журнала "За рулем"

Несмотря на огромное многообразие типов и моделей современных автомобилей, конструкция каждого из них состоит из набора агрегатов, узлов и механизмов, наличие которых позволяет называть транспортное средство «автомобилем». К основным конструктивным блокам относятся:
- двигатель;
- движитель;
- трансмиссия;
- системы управления автомобилем;
- несущая система;
- подвеска несущей системы;
- кузов (кабина).
Двигатель является источником механической энергии, необходимой для движения автомобиля. Механическая энергия получается за счет преобразования в двигателе другого вида энергии (энергии сгорающего топлива, электроэнергии, энергии предварительно сжатого воздуха и т. п.). Источник немеханической энергии, как правило, находится непосредственно на автомобиле и время от времени пополняется.
В зависимости от вида использованной энергии и процесса ее преобразования в механическую на автомобиле могут применяться:
- двигатели, использующие энергию сгорающего топлива (поршневой двигатель внутреннего сгорания, газовая турбина, паровой двигатель, роторно-поршневой двигатель Ванкеля, двигатель внешнего сгорания Стирлинга и т. п.);
- двигатели, использующие электроэнергию, - электродвигатели;
- двигатели, использующие энергию предварительно сжатого воздуха;
- двигатели, использующие энергию предварительно раскрученного маховика, - маховичные двигатели.
Наибольшее распространение на современных автомобилях получили поршневые двигатели внутреннего сгорания, использующие в качестве источника энергии жидкое топливо нефтяного происхождения (бензин, дизельное топливо) или горючий газ.
К системе «двигатель» относят также подсистемы хранения и подачи топлива и удаления продуктов сгорания (системы выпуска).
Движитель автомобиля обеспечивает связь автомобиля с внешней средой, позволяет ему «отталкиваться» от опорной поверхности (дороги) и преобразует энергию двигателя в энергию поступательного движения автомобиля. Основной тип движителя автомобиля - колесо. Иногда в автомобилях применяются комбинированные движители: для автомобилей высокой проходимости колесно-гусеничные движители (рис. 1.11), для автомобилей–амфибий колесный (при движении по дороге) и водометный (на плаву) движители.
Трансмиссия (силовая передача) автомобиля передает энергию от двигателя к движителю и преобразует ее в удобную для использования в движителе форму. Трансмиссии могут быть:
- механические (передается механическая энергия);
- электрические (механическая энергия двигателя преобразуется в электрическую, передается к движителю по проводам и там снова преобразуется в механическую);
- гидрообъемная (вращение коленчатого вала двигателя преобразуется насосом в энергию потока жидкости, передающейся по трубопроводам к колесу, и там, посредством гидромотора, снова преобразуется во вращение);
- комбинированные (электромеханические, гидромеханические).


Механическая трансмиссия классического автомобиля
Наибольшее распространение на современных автомобилях получили механическая и гидромеханическая трансмиссии. Механическая трансмиссия состоит из фрикционной муфты (сцепления), преобразователя крутящего момента, главной передачи, дифференциала, карданных передач, полуосей.
Сцепление - муфта, дающая возможность кратковременно разъединить и плавно соединить двигатель и связанные с ним механизмы трансмиссии.
Преобразователем крутящего момента является механизм, позволяющий ступенчато или бесступенчато изменять крутящий момент двигателя и направление вращения валов трансмиссии (для движения задним ходом). При ступенчатом изменении момента данный механизм называется коробкой передач , при бесступенчатом - вариатором .
Главная передача - зубчатый редуктор с коническими и (или) цилиндрическими шестернями, повышающий крутящий момент, передаваемый от двигателя к колесам.
Дифференциал - механизм, распределяющий крутящий момент между ведущими колесами и позволяющий вращаться им с разными угловыми скоростями (при движении на поворотах или по неровной дороге).
Карданные передачи представляют собой валы с шарнирами, связывающие между собой агрегаты трансмиссии и колес. Они позволяют передавать крутящий момент между указанными механизмами, валы которых расположены не соосно и (или) изменяют при движении взаимное расположение друг относительно друга. Количество карданных передач зависит от конструкции трансмиссии.
Гидромеханическая трансмиссия отличается от механической тем, что вместо сцепления устанавливается гидродинамическое устройство (гидромуфта или гидротрансформатор), выполняющее как функции сцепления, так и функции бесступенчатого вариатора. Как правило, это устройство размещается в одном корпусе с механической коробкой передач.
Электрические трансмиссии применяются сравнительно редко (например, на тяжелых карьерных самосвалах, на внедорожных автомобилях) и включают в себя: генератор на двигателе, провода и систему электроуправления, электромоторы на колесах (электрические мотор-колеса).
При жестком соединении двигателя, сцепления и коробки передач (вариатора) данная конструкция называется силовым агрегатом .
В ряде случаев на автомобиле могут быть установлены несколько двигателей различных типов (например, двигатель внутреннего сгорания и электродвигатель), связанных друг с другом трансмиссией. Такая конструкция называется гибридной силовой установкой .
Системы управления автомобилем включают в себя:
- рулевое управление ;
- тормозную систему ;
- управление прочими системами автомобиля (двигателем, трансмиссией, температурой в кабине и т. д.). Рулевое управление служит для изменения направления движения автомобиля, как правило, за счет поворота управляемых колес.
[Тормозная система]] служит для уменьшения скорости движения автомобиля вплоть до полной остановки и надежного удержания его на месте.


Несущая система в виде лонжеронной рамы


Несущий кузов

Несущая система автомобиля служит для крепления на ней всех прочих узлов, агрегатов и систем автомобиля. Она может выполняться в виде плоской рамы или объемного

Общее устройство и принцип работы легкового автомобиля по структурной схеме

Состав и принцип работы современных легковых автомобилей, передне-приводных, заднеприводных и полноприводных в общем одинаковы.

Структурная схема заднеприводного автомобиля показана на рис. 6.1.1.

В состав автомобиля входят:

  • двигатель 1;
  • силовая передача или , в состав которой входят: сцепление 5, коробка передач 7, карданная передача 8, главная передача и дифференциал 11, полуоси 10;

Рис. 6.1.1. Структурная схема заднеприводного автомобиля: 1 - двигатель; 2 - педаль подачи топлива; 3 - генератор; 4 - педаль сцепления; 5 - сцепление; 6 - рычаг переключения передач; 7 - коробка переключения передач; 8 - карданная передача; 9 - колесо; 10 - полуоси; 11 - главная передача и дифференциал; 12 - стояночный (ручной) тормоз; 13 - основная тормозная система; 14 - стартер; 15 - электропитание от аккумулятора; 16 - подвеска; 17 - рулевое управление; 18 - гидромагистраль

  • ходовая часть , в которую входят: передняя и задняя подвески 16, колеса и шины 9;
  • механизмы управления , состоящие из рулевого управления 17, основной 13 и стояночной 12 тормозной системы;
  • электрооборудование , в состав которого входят источники электрического тока (аккумулятор и генератор), электрические потребители (система зажигания, система пуска, приборы освещения и сигнализации, контрольно-измерительные приборы, системы обогрева и вентиляции, стеклоочиститель, стеклоомыватель и др.);
  • несущий кузов .

У переднеприводных автомобилей нет карданной передачи и надкарданного короба в кузове, поэтому салон становится просторней и комфортабельней, а масса автомобиля меньше.

Двигатель 1 (рис. 6.1.1) - машина, преобразующая какой-либо вид энергии (бензин, газ, дизельное топливо, заряд электричества) в энергию вращения коленчатого двигателя.

На большинстве современных автомобилей установлены поршневые двигатели внутреннего сгорания (ДВС), в которых часть энергии, выделяющейся при сгорании топлива в цилиндре, преобразуется в механическую работу вращения коленчатого вала (рис. 6.1.2).

Литраж - единица измерения объема двигателя равная произведению площади поршня на длину его хода и число цилиндров. Литраж характеризует мощность и размеры двигателя, выражается в литрах или кубических сантиметрах.

Для изменения количества топливной смеси, подаваемой в цилиндр (для изменения мощности двигателя), служит педаль подачи топлива (педаль газа) 2.

Рис. 6.1.2. Внешний вид современного двигателя: 1 - крышка клапанной коробки; 2 - пробка горловины для заливки масла в двигатель; 3 - головка блока цилиндров; 4 - шкивы; 5 -приводной ремень; 6 - генератор; 7 - картер; 8 - поддон; 9 - выпускной коллектор

На коленчатом валу установлен маховик с зубчатым венцом, который является ведущим 5.

Сцепление 5 осуществляет постоянную механическую связь между двигателем и коробкой передач и предназначено для кратковременного ее отключения на время, необходимое для включения или переключения передачи.

Сцепление (рис. 6.1.3) представляет собой две фрикционные муфты 1 и 3, прижатые друг к другу пружиной 4. Ведущий диск 1 механически связан с коленчатым валом двигателя, ведомый диск 3 - с ведущим валом коробки передач 14.

Включение и выключение сцепления осуществляется водителем с помощью педали 8 (когда педаль нажата, сцепление выключено). При нажатии на педаль диски сцепления 1 и 3 расходятся, ведущий диск 1, связанный с двигателем 13, вращается, но это вращение на ведомый диск 3 не передается (сцепление выключено). Выключать сцепление нужно на период включения или переключения передач для безударного соединения шестерен в коробке передач.

При плавном отпускании педали происходит плавное сцепление ведущего и ведомого дисков. При этом за счет проскальзывания ведущий диск плавно навязывает вращение ведомому диску. Тот начинает вращаться, передавая крутящий момент на первичный вал коробки передач 14. Таким образом автомобиль может начать плавное движение с места или же продолжит движение на новой передаче.

Коробка переключения передач служит для изменения по величине и на-правлению крутящего момента и передачи его от двигателя к ведущим колесам, а также для длительного разобщения двигателя от ведущих колес во время стоянки автомобиля.

Коробка передач может быть механической (с ручным переключением передач) или автоматической (гидротрансформатор, роботизированная или вариаторная коробка).

Рис. 6.1.3. Схема сцепления: 1 - маховик; 2 - ведомый диск сцепления; 3 - нажимной диск; 4 - пружина; 5 - отжимные рычаги; 6 - выжимной подшипник; 7 - вилка выключения сцепления; 8 - педаль сцепления; 9 - главный цилиндр сцепления; 10 - гидравлическая жидкость; 11 - трубопровод; 12 - рабочий цилиндр сцепления; 13 -двигатель; 14 - ведущий вал коробки передач; 15 - коробка передач

Механическая коробка переключения передач (рис. 6.1.4) представляет собой редуктор со ступенчато изменяемым коэффициентом передач.

В его составе:

  • картер 12, в котором размещено масло 13 для смазки трущихся деталей;
  • первичный вал 2, связанный с ведомым диском сцепления 1
  • шестерня первичного вала 3, которая связана постоянно с шестерней промежуточного вала;
  • промежуточный вал 4 с набором шестерен разного диаметра;
  • вторичный вал 9 с набором шестерен, которые способны перемещаться с помощью вилки переключения передач 6;
  • механизм переключения передач 8 с рычагом переключения 7;
  • синхронизаторы - устройства, обеспечивающие выравнивание скоростей вращения шестерен во время переключения передач.

Водитель переключает передачи с помощью рычага переключения 7. Поскольку в коробке передач современного автомобиля имеется большой набор шестерен, то вводя в зацепление различные их пары (при включении любой передачи), водитель изменяет и общее передаточное число (коэффициент передачи). Чем ниже передача, тем ниже скорость движения автомобиля, но больший крутящий момент и наоборот.

При работающем двигателе перед включением или переключением передач в механической коробке для безударного переключения шестерен нужно выжимать педаль сцепления (выключать сцепление).

Рис. 6.1.4. Механическая коробка переключения передач: 1 - сцепление; 2 - первичный вал; 3 - ведущая шестерня; 4 - промежуточный вал; 5 - шестерня вторичного вала; 6 - вилка переключения передач; 7 - рычаг переключения передач; 8 - переключающее устройство; 9 - вторичный вал; 10 - крестовина; 11 - карданная передача; 12 - картер; 13 - масло для коробки передач

Наиболее распространенные схемы переключения передач в легковых автомобилях приведены на рис. 6.1.5.

Рис. 6.1.5. Наиболее распространенные схемы переключения передач в легковых автомобилях - 1 и 2, 3 и 4 - пользование рычагом переключения передач

В автоматическую коробку переключения передач (рис. 6.1.6) входят:

  • гидротрансформатор (2, 5, 4, 5, 9), который непосредственно присоединен к двигателю, заполнен гидравлической жидкостью 10. Жидкость является средой для передачи крутящего момента от двигателя к механической коробке передач. Принцип работы таков: с увеличением оборотов двигателя увеличиваются обороты вала 2 с лопастями 3, которые вызывают вращение гидравлической жидкости 10. Вращающаяся жидкость начинает давить на лопасти вторичного вала 4 и вызывает вращение вторичного вала. Гидротрансформатор по сути своей работы исполняет роль сцепления;
  • механическая коробка передач 7 получает вращение от гидротрансформатора, переключение передач в ней осуществляется сервоприводами по командам блока управления 6.

Рис. 6.1.6. Автоматическая коробка переключения передач: 1 -двигатель; 2 - первичный вал; 3 - лопасти первичного вала; 4 - лопасти вторичного вала: 5 - вторичный вал; 6 - блок управления коробкой-автомат; 7 - механическая коробка переключения передач; 8 - выходной вал

Для управления автоматической, роботизированной или вариаторной коробкой передач служит селектор переключения передач (рис. 6.1.7).

Рис. 6.1.7. Типовые схемы селекторов автоматических коробок переключения передач:

Р - парковка, механически блокирует коробку передач; R - задний ход, включать следует только после полной остановки автомобиля; N - нейтраль, в этом положении можно запускать двигатель; D - драйв, движение вперед; S (D3) - диапазон пониженных передач, включается на дорогах с небольшими подъемами. Торможение двигателем более эффективное, чем в положении D; L (D2) - второй диапазон пониженных передач. Включается на тяжелых участках дорог. Торможение двигателем еще более эффективное

Карданная передача (в задне- и полноприводном автомобиле) позволяет передавать крутящий момент от коробки передач на задний мост (главную передачу) в условиях движения автомобиля по неровной дороге (рис. 6.1.8).

Рис. 6.1.8. Карданная передача: 1 - передний вал; 2 - крестовина; 3 - опора; 4 - карданный вал; 5 - задний вал

Главная передача 5 служит для увеличения крутящего момента и передачи его под прямым углом на полуоси 6 автомобиля (рис. 6.1.9).

Дифференциал обеспечивает вращение ведущих колес с различными скоростями при повороте автомобиля и движении колес по неровной дороге.

Полуоси 6 передают крутящий момент ведущим колесам 7.

Ходовая часть обеспечивает движение и плавность хода. Она включает в себя подрамник, как правило, совмещенный , к которому посредством передней и задней подвесок крепятся элементы передней и задней осей со ступицами и колесами 7.

Механизмы и детали ходовой части связывают колеса с кузовом, гасят его колебания, воспринимают и передают силы, действующие на автомобиль.

Находясь в салоне легкового автомобиля, водитель и пассажиры испытывают медленные колебания с большими амплитудами и быстрые колебания с малыми амплитудами. От быстрых колебаний защищает мягкая обивка сидений, резиновые опоры двигателя, коробки передач и пр. Защитой от мед-ленных колебаний служат упругие элементы подвески, колеса и шины.

Рис. 6.1.9. Заднеприводный автомобиль: 1 - двигатель; 2 - сцепление; 3 - коробка передач; 4 - карданная передача; 5 - главная передача; 6 - полуось; 7 - колесо; 8 - рессорная подвеска; 9 - пружинная подвеска; 10 - рулевое управление

Подвеска (рис. 6.1.10) предназначена для смягчения и гашения колебаний, передаваемых от неровностей дороги на кузов автомобиля. Благодаря подвеске колес кузов совершает вертикальные, продольные, угловые и поперечно-угловые колебания. Все эти колебания определяют плавность хода автомобиля. Подвеска может быть зависимой и независимой.

Зависимая подвеска (рис. 6.1.10), когда оба колеса одной оси автомобиля связаны между собой жесткой балкой (задние колеса). При наезде на неровность дороги одного из колес второе наклоняется на тот же угол. Независимая подвеска, когда колеса одной оси автомобиля не связаны жестко друг с другом. При наезде на неровность дороги одно из колес может менять свое положение, положение второго колеса не изменяется.

Рис. 6.1.10. Схема работы зависимой (а) и независимой (б) подвески колес автомобиля

Упругий элемент подвески (пружина или рессора) служит для смягчения ударов и колебаний, передаваемых от дороги к кузову.

Рис. 6.1.11. Схема амортизатора:

1 - кузов автомобиля; 2 - шток; 3 - цилиндр; 4 - поршень с клапанами; 5 - рычаг; 6 - нижняя проушина; 7 -гидравлическая жидкость; 8 - верхняя проушина

Гасящий элемент подвески - амортизатор (рис. 6.1.11) - необходим для гашения колебаний кузова за счет сопротивления, возникающего при перетекании жидкости 7 через калиброванные отверстия из полости «А» в полость «В» и обратно (гидравлический амортизатор). Также могут применяться газовые амортизаторы, в которых сопротивление возникает при сжатии газа. Стабилизатор поперечной устойчивости автомобиля предназначен для повышения управляемости и уменьшения крена автомобиля на поворотах. На повороте кузов автомобиля одним своим боком прижимается к земле, в то время как второй бок хочет уйти «в отрыв» от земли. Вот в отрыв-то ему и не дает возможности уйти стабилизатор поперечной устойчивости, который, прижавшись к земле одним концом, вторым прижимает другую сторону автомобиля. А при наезде какого-либо ко-леса на препятствие стержень стабилизатора закручивается и стремится вернуть это колесо на свое место.

Рис. 6.1.12. Схема рулевого управления типа «шестерня - рейка»: 1 - колеса; 2 - поворотные рычаги; 3 - рулевые тяги; 4 - рейка рулевого механизма; 5- шестерня; 6-рулевое колесо

Рулевое управление (рис. 6.1.12) служит для изменения направления движения автомобиля с помощью рулевого колеса. При вращении руля 6 шестерня 5 вращается и перемещает рейку 4 в ту или иную сторону. Рейка при перемещении изменяет положение тяг 3 и связанных с ними поворотных рычагов 2. Колеса поворачиваются.

Рис. 6.1.13. Тормозная система: основная - 1-6 и стояночная (ручная) -7-10. Исполнительные тормозные устройства: А -дисковые; Б - барабанного типа; 1 - главный тормозной цилиндр; 2 - поршень; 3 - трубопроводы; 4 - гидравлическая тормозная жидкость; 5 - шток; 6 - педаль тормоза; 7 - рычаг ручного тормоза; 8 - трос; 9 - уравнитель; 10 - трос

Тормозная система (рис. 6.1.13) служит для снижения скорости вращения колес за счет сил трения, возникающих между тормозными колодками 11 и тормозными барабанами А или дисками Б, а также для удержания автомобиля в неподвижном состоянии на стоянках, на спусках и подъемах с помощью ручной тормозной системы (7-10). Водитель управляет тормозной системой с помощью педали тормоза 6 основной тормозной системы и рычага стоя-ночного (ручного) тормоза 7.

Основная тормозная система (1-6), как правило, многоконтурная, то есть при нажатии на педаль тормоза 6 перемещаются поршни 2, давление гидравлической тормозной жидкости 4 по трубопроводам 3 передается к исполнительным тормозным устройствам А - для торможения передних колес и тормозным исполнительным устройствам Б - для торможения задних колес. Системы А и Б - независимы друг от друга. Если один контур тормозной системы выйдет из строя, то другой будет продолжать выполнять функцию торможения, хотя и менее эффективно. Многоконтурность тормозной системы повышает безопасность движения.

Екатеринбург

ОСНОВНЫЕ ЧАСТИ АВТОМОБИЛЯ И ИХ НАЗНАЧЕНИЕ.. 2

ПРИНЦИПЫ КЛАССИФИКАЦИИ АВТОМОБИЛЕЙ ОСНОВНЫХ ТИПОВ.. 2

ИНДЕКСАЦИЯ (ОБОЗНАЧЕНИЕ) АВТОМОБИЛЕЙ.. 2

ТРЕБОВАНИЯ ПРЕДЪЯВЛЯЕМЫЕ К КОНСТРУКЦИИ АВТОМОБИЛЯ.. 2

ВИДЫ БЕЗОПАСНОСТИ АВТОМОБИЛЕЙ.. 2

ТИПАЖ ОТЕЧЕСТВЕННЫХ ПРИЦЕПОВ.. 2

РОТОРНО – ПОРШНЕВОЙ ДВИГАТЕЛЬ ВАНКЕЛЯ.. 2

УСТРОЙСТВО РОТОРНО – ПОРШНЕВОГО ДВИГАТЕЛЯ.. 2

АВТОМОБИЛИ С РПД ВАНКЕЛЯ.. 2

НАЗНАЧЕНИЕ, ТИПЫ, ОБЩЕЕ УСТРОЙСТВО КОНСТРУКЦИЙ ВАРИАТОРОВ.. 2

НАЗНАЧЕНИЕ, ТИПЫ, ОБЩЕЕ УСТРОЙСТВО АНТИБЛОКИРОВОЧНЫХ СИСТЕМ ТОРМОЗОВ 2

СИСТЕМА КОНТРОЛЯ ДАВЛЕНИЯ В ШИНАХ.. 2

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ... 2


ОСНОВНЫЕ ЧАСТИ АВТОМОБИЛЯ И ИХ НАЗНАЧЕНИЕ

Автомобиль состоит из трех частей:

3) двигатель

Кузов автомобиля предназначен для размещения грузов, водителя и пассажиров. У грузовых автомобилей кузов включает кабину и грузовую платформу. У легковых автомобилей кузов представляет собой несущую пространственную систему, так как является одновременно помещением для пассажиров и груза, а также основанием для крепления двигателя, агрегатов трансмиссии, ходовой части и механизмов управления.

Рис – 1 кузов легкового автомобиля

Рис – 2 кузов грузового автомобиля

Шасси – это совокупность агрегатов трансмиссии, ходовой части и механизмов управления


Рис – 3 шасси автомобиля

Трансмиссия представляет собой совокупность механизмов, передающих вращающий момент от коленчатого вала двигателя к ведущим колесам, а также изменяющих вращающий момент и частоту вращения ведущих колес по величине и направлению.
Трансмиссия состоит из:

1) сцепления

2) коробки перемены передач

3) главной передачи

4) карданной передачи (для заднеприводных автомобилей)

5) дифференциала

6) привода колес (полуосей, шарниров равных угловых скоростей)


Рис – 4 схема трансмиссии

Сцепление необходимо для кратковременного разъединения двигателя и трансмиссии при переключении передач и для плавного их соединения при трогании с места.



Рис – 5 сцепление

Коробка перемены передач предназначена для изменения вращающего момента на ведущих колесах, скорости и направления движения автомобиля путем ввода в зацепление различных пар шестерен.


Рис – 6 коробка перемены передач

Главная передача служит для увеличения крутящего момента и изменения его направления под прямым углом к продольной оси автомобиля.
С этой целью главную передачу выполняют из конических шестерен. В зависимости от числа шестерен главные передачи разделяют на одинарные конические, состоящие из одной пары шестерен, и двойные, состоящие из пары конических и пары цилиндрических шестерен.

Одинарные конические, в свою очередь, подразделяют на простые и гипоидные передачи.

Рис – 7 типы главной передачи:
1 - ведущая коническая шестерня, 2 – ведомая коническая шестерня,
3 - ведущая цилиндрическая шестерня, 4 - ведомая цилиндрическая шестерня.

Одинарные конические простые передачи применяют преимущественно на легковых автомобилях и грузовых автомобилях малой и средней грузоподъемности. В этих передачах ведущая коническая шестерня 1 соединена с карданной передачей, а ведомая 2 с коробкой дифференциала и через механизм дифференциала с полуосями. (Рис – 7 а)
Для большинства автомобилей одинарные конические передачи имеют зубчатые колеса с гипоидным зацеплением. Гипоидные передачи по сравнению с простыми обладают рядом преимуществ: они имеют ось ведущего колеса, расположенную ниже оси ведомого, что позволяет опустить ниже карданную передачу, понизить пол кузова легкового автомобиля. Вследствие этого снижается центр тяжести и повышается устойчивость автомобиля. Кроме того, гипоидная передача имеет утолщенную форму основания зубьев шестерен, что существенно повышает их нагрузочную способность и износостойкость. Но это обстоятельство обусловливает применение для смазки шестерен специального масла (гипоидного), рассчитанного для работы в условиях передачи больших усилий, возникающих в контакте между зубьями шестерен. (Рис – 7 б)
Двойные главные передачи (Рис – 7 в) устанавливают на автомобилях большой грузоподъемности для увеличения общего передаточного числа трансмиссии и повышения передаваемого крутящего момента.

Карданная передача предназначена для передачи крутящего момента между валами, расположенными под углом друг к другу.



Рис – 8 карданная передача


Дифференциал служит для распределения подводимого к нему вращающего момента между валами и обеспечивает возможность их вращения с неодинаковыми угловыми скоростями.

При движении автомобиля на повороте внутреннее колесо каждой оси проходит меньшее расстояние, чем ее наружное колесо, а колеса одной оси проходят разные пути по сравнению с колесами других осей.

Неодинаковые пути проходят колеса при движении по неровностям на прямолинейных участках и на повороте, а также в случае прямолинейного движения по ровной дороге при разных радиусах качения колес, например при неодинаковом давлении воздуха в шинах и износе шин или неравномерном распределении груза на автомобиле.

Рис – 9 дифференциал


Привод колес обеспечивает передачу крутящего момента от дифференциала к ведущим колесам.

Рис – 10 шарнир равных угловых скоростей


Рис – 11 полуось


Ходовая часть предназначена для перемещения автомобиля по дороге с определенным уровнем комфорта без тряски и вибраций. Ходовая часть автомобиля состоит из несущего основания (кузов или рама) передней и задней подвески и колес.

Подвеска - это система устройств для упругой связи остова автомобиля с его колесами, гасит колебания кузова, смягчает и поглощает удары колес о неровности дороги. Она бывает зависимой и независимой.

На автомобилях устанавливают дисковые колеса с пневмати­ческими шинами. В результате сцепления ведущих колес с грун­том их вращательное движение преобразуется в поступательное движение автомобиля. По назначению колеса делят на ведущие, управляемые ведомые и комбинированные (одновременно ведущие и управляемые).


Рис – 12 ходовая часть автомобиля

Рулевое управление предназначено для изменения направле­ния движения автомобиля посредством поворота передних колес.
Рулевой механизм осуществляет передачу усилия от водителя к рулевому приводу и облегчает поворот рулевого колеса. Различают несколько типов рулевых механизмов: червяк – ролик, рейка – сек­тор и винт – гайка.

Рулевой механизм типа червяк – ролик. Его применяют на не­ которых автомобилях среднего класса, имеющих механическое ру­левое управление.


Рис – 13 рулевой механизм червяк – ролик

Рулевой механизм типа винт - гайка. Такой механизм применя­ют при механическом или гидромеханическом управлении. Меха­ническое управление используется на автомобилях малого класса, а на автомобилях средней и большой грузоподъемности применя­ют рулевое управление с гидроусилителем.


Рис – 14 рулевой механизм винт - гайка
Основной частью его является картер 1, имеющий форму цилиндра. Внутри цилиндра размещены поршень - рейка 10 с жестко закрепленной в нем гайкой 3. Гайка имеет внутреннюю нарезку в виде полукруглой канавки, куда заложены шарики 4. Посредством шариков гайка зацеплена с винтом 2, который, в свою очередь, соединен с рулевым валом 5. В верхней части картера к нему крепится корпус 6 клапана управления гидроусилителем. Управляющим элементом в клапане является золотник 7. Исполнительным механизмом гидроусилителя служит поршень-рейка 10, уплотненный в цилиндре картера с помощью поршневых колец. Рейка поршня соединена нарезкой с зубчатым сектором 9 вала 8 сошки.
Вращение рулевого вала преобразуется передачей рулевого механизма в перемещение гайки - поршня по винту. При этом зубья рейки поворачивают сектор и вал с закрепленной на нем сошкой, благодаря чему происходит поворот управляемых колес. При работающем двигателе насос гидроусилителя подает масло под давлением в гидроусилитель, вследствие чего при совершении поворота усилитель развивает дополнительное усилие, приклады­ваемое к рулевому приводу. Принцип действия усилителя основан на использовании давления масла на торцы поршня - рейки, которые создают дополнительную силу, передвигающую поршень и облегчающую поворот управляемых колес.

Рулевой механизм сектор – рейка.


Рис – 15 сектор рейка

Реечный рулевой механизм является самым распространенным типом механизма, устанавливаемым на легковые автомобили. Реечный рулевой механизм включает шестерню и рулевую рейку. Шестерня устанавливается на валу рулевого колеса и находится в постоянном зацеплении с рулевой (зубчатой) рейкой. Работа реечного рулевого механизма осуществляется следующим образом. При вращении рулевого колеса рейка перемещается вправо или влево. При движении рейки перемещаются присоединенные к ней тяги рулевого привода и поворачивают управляемые колеса.

Реечный рулевой механизм отличает простота конструкции, соответственно высокий КПД, а также высокая жесткость. Вместе с тем, данный тип рулевого механизма чувствителен к ударным нагрузкам от дорожных неровностей, склонен к вибрациям. В силу своих конструктивных особенностей реечный рулевой механизм устанавливается на переднеприводных автомобилях с независимой подвеской управляемых колес.

Тормозная система

Для снижения скорости движения, остановки и удержания в не­ подвижном состоянии автомобили оборудуют тормозной систе­мой. Различают следующие виды тормозных систем: стояночную, которая служит для удержания машины на склоне, и рабочую, необходимую для снижения скорости движения машины и ее полной остановки с необходимой эффективностью. Тормозная система состоит из тормозных механизмов и их при­вода. Наибольшее рас­пространение получили фрикционные тормоза, принцип действия которых основан на использовании сил трения между неподвиж­ными и вращающимися деталями. Фрикционные тормоза могут быть барабанными и дисковыми. В барабанном тормозе силы тре­ния создаются на внутренней цилиндрической поверхности вра­щения, а в дисковом на боковых поверхностях вращающегося диска.

Гидравлическая тормозная система


Рис – 16 гидравлическая тормозная система

1 - тормозной механизм переднего колеса;

2 - трубопровод контура «левый передний - правый задний тормозные механизмы»;

3 - главный цилиндр гидропривода тормозных механизмов;

4 - трубопровод контура «правый передний - левый задний тормозные механизмы»;
5 - бачок главного цилиндра;
6 - вакуумный усилитель;

7 - тормозной механизм заднего колеса;

8 - упругий рычаг привода регулятора давления;

9 - регулятор давления;
10 - рычаг привода регулятора давления;
11 - педаль тормозной системы

Действует тормозная система следующим образом. Когда водитель нажимает ногой на тормозную педаль, перемещаемый ею поршень в главном тормозном цилиндре выжимает жидкость в колесные тормозные (рабочие) цилиндры через вакуумный усили­тель. Размещенные в рабочих цилиндрах поршни под действием жидкости прижимают колодки колесного тормоза к барабану ко­леса и замедляют его вращение.
Гидровакуумный усилитель облегчает управление тормозами автомобиля, используя разрежение (вакуум), возникающее во вса­сывающем трубопроводе двигателя. Усилитель при торможении увеличивает давление в системе на 4,5... 5,0 МПа.


Пневматическая тормозная система


Рис – 17 пневматическая тормозная система

Устройство тормозной системы с пневматическим тормозным приводом автомобиля ЗИЛ-130 входят:
- тормозные механизмы задних 4 и передних 14 колес,
- компрессор 1,
- баллоны 3 для хранения сжатого воздуха,
- тормозные камеры задних 5 и передних 13 колес,
тормозной кран 10,

Тормозная педаль 11,
- манометры 2,
- соединительные трубопроводы и шланги 9,
- трубопровод 6,
- разобщительный кран 8
- соединительная головка 7 для подвода воздуха к тормозной системе прицепа.

Принцип работы: компрессор 1 засасывает воздух из атмосферы, сжимает его и подает в стальные баллоны 3, где он хранится под давлением 0,7-0,9 МПа. При нажатии водителем на тормозную педаль в тормозном кране открывается впускной клапан и сжатый воздух из баллонов по трубопроводам и шлангам поступает в тормозные камеры 5 и 14 и через них воздействует на колесные тормозные механизмы, затормаживая колеса.

Чтобы продолжить движение, водитель отпускает тормозную педаль, поступление воздуха к тормозным камерам прекращается, а имевшийся там воздух удаляется через выпускной клапан тормозного крана в атмосферу.


Двигатель
Двигатель - устройство, преобразующее энергию сгорания топлива в механическую работу.
На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгора­ет внутри цилиндра. Действие ДВС основано на использовании свойства газов к рас­ширению при нагревании.


Рис – 18 рядный четырех цилиндровый двигатель в разрезе


Рис – 19 V образный восьми цилиндровый двигатель

Автомобильные двигатели различают:

По способу приготовления горючей смеси с внешним смесеобразованием (карбюраторные, инжекторные, га­зовые двигатели) и с внутренним смесеобразованием (дизели);

По роду применяемого топлива - бензиновые (работающие на бензине), газовые (на горючем газе) и дизели (работающие на дизельном топливе);

По способу охлаждения - с жидкостным и воздушным ох­лаждением;
- по расположению цилиндров – рядные, V- образные оппозитные;
- по способу воспламенения горючей (рабочей) смеси - с принудительным зажиганием от электрической искры (карбюраторные и инжекторные двигатели) или с самовоспламенением от сжатия (дизели).

Основные механизмы двигателя:
- Кривошипно - шатунный механизм преобразует прямолинейное движение поршней во вра­щательное движение коленчатого вала.

Механизм газораспределения управляет работой клапа­нов, что позволяет в определенных положениях поршня впускать воздух или горючую смесь в цилиндры, сжимать их до определен­ного давления и удалять оттуда отработавшие газы.

Основные системы двигателя:

Система питания служит для подачи очищенного топлива и воздуха в цилиндры, а также для отвода продуктов сгорания из цилиндров.
- Система питания дизеля обеспечивает подачу дозированных порций топлива в определенный момент в распыленном состоя­нии в цилиндры двигателя.
- Система зажигания она служит для воспламене­ния рабочей смеси в цилиндрах двигателя в определенный мо­мент.
- Смазочная система необходима для непрерывной подачи масла к трущимся деталям и отвода теплоты от них.
- Система охлаждения предохраняет стенки камеры сгора­ния от перегрева и поддерживает в цилиндрах нормальный тепло­вой режим.

Принцип работы четырехтактного двигателя

Рис – 20 такты четырехтактного двигателя

Рабочий цикл 4-х тактного двигателя состоит из четырех тактов: впуска, сжатия, расширения (рабочего хода) и выпуска.
При впуске поршень опускается из верхней мертвой точки (ВМТ) в нижнюю (НМТ). При этом с помощью кулачков распределительного вала открывается впускной клапан, через который в цилиндр засасывается топливная смесь.

При обратном ходе поршня (из НМТ в ВМТ) происходит сжатие топливной смеси, сопровождающееся ростом ее температуры.

Перед самым концом сжатия между электродами свечи загорается искра, поджигающая топливную смесь, которая, сгорая, образует горючие газы, толкающие поршень вниз. Происходит рабочий ход, при котором совершается полезная работа.

После перехода поршня к НМТ открывается выпускной клапан, позволяя двигающемуся вверх поршню вытолкнуть отработавшие газы из цилиндра. Происходит выпуск. В верхней мертвой точке выпускной клапан закрывается, и цикл повторяется снова.