Рулевые машины судовые. Рулевое устройство, составные части и их назначение

Конструкция рулевых устройств с пассивным рулем зависит от следующих факторов:

Конструктивных особенностей кормового подзора судна;

Типа рулей;

Типа соединения руля с баллером;

Типа рулевого привода.

Рули . Судно может иметь один (в ДП), два (за винтами на двухвинтовых судах), а также три и более рулей.

Современный судовой руль (рис.208) представляет собой вертикальное крыло с внутренними подкрепляющими ребрами, вращающееся вокруг вертикальной оси, площадь которого у морских судов составляет 1/40–1/60 площади погруженной части ДП (произведения длины судна на его осадку: LT).

На форму руля значительное влияние оказывает форма кормовой оконечности судна и расположение ГВ.

По форме профиля пера рули делятся на плоские и профильные обтекаемые . Профильный руль состоит из двух выпуклых наружных оболочек, имеющих с внутренней стороны ребра и вертикальные диафрагмы, сваренных друг с другом и обра­зующих каркас для повышения жесткости, который с обеих сторон покрыт приваренными к нему стальными листами.

Профильные рули имеют перед пластинчатыми ряд преимуществ: более высокое значение нормальной силы давления на руль; меньший момент, необходимый для поворота руля. Кроме того, обтекаемый руль позволяет улучшить пропульсивные качества судна. Поэтому они нашли наибольшее применение.

Внутреннюю полость пера руля заполняют пористым материалом, предотвра­щающим попадание воды внутрь. Перо руля крепится к рудерпису с помощью штырей (рис. 209, 210). Рудерпис отли­вают (или отковывают) заодно с петлями для навешивания руля на рудерпост (отливку иногда заменяют сварной конструкцией), являющийся неотъемлемой частью ахтерштевня.

По способу соединения с корпусом и количеству опор пера пассивные рули разделяют:

На простые (многоопорные) (рис. 211, а , б, в );

Полуподвесные (одноопорные – подвешенные на бал­лере и опертые на корпус в одной точке) (рис. 211, в );

Подвесные (безопорные, подвешенные на баллере) (рис. 211, г ).

По положению оси баллера относительно пера разли­чают рули небалансирные (обычные), у которых ось баллера проходит вблизи передней кромки пера, и балансирные, ось бал­лера у которых расположена на некотором расстоянии от передней кромки руля. Полуподвесные балансирные рули называют также полубалансирными (см. рис. 211).

Небалансирные рули уста­на­в­ливают на одновинтовых судах, полубалансирные и балан­сир­ные – на всех судах. Применение подвесных (балансирных) рулей позволя­ет снизить мощность рулевой машины за счет умень­шения крутящего момента, необходимого для пе­рекладки руля.

Наиболее важными геометрическими характеристиками руля являются:

Площадь S r ;

Относительное удлинение l r = S r /b 2 r = h 2 r /S r ;

- средняя ширина руля b r ;

Высота пера руля h r ;

Форма и относительная толщина профиля.

Величина площади пера руля зависит от типа судна и его назначения. Для ориентировочной оценки необходимой площади руля обычно используют отношение S r /LT ,которое для морских транспортных судов с одним рулем составляет 1,8–2,7, для танкеров – 1,82,2; для буксиров 36; для судов прибрежного плавания 2,33,3.

Баллер руля (см. рис. 211, 213) – это массивный вал, при помощи которого поворачи­вается перо руля. Нижний конец баллера обычно имеет криволи­нейную форму и заканчивается лапой – фланцем, служащим для соединения баллера с пером руляболтами, что облегчает съем руля при ремонте (рис.212). Иногда вместо фланцевого (рис. 212, а ) применяют замковое (рис. 212, б ) или конусное соединение. Крепление пера руля к баллеру и корпусу на многих типах судов имеет много общего и отличается незначительно. Конструкции верхнего узла крепления приведены на рис. 209, а нижнего – на рис. 211, а, б ) Установка под штырь чечевицы из закаленной стали для уменьшения трения в точке опоры пера руля показана на рис. 210, а .

Баллер руля входит в кормовой подзор корпуса через гельмпортовую трубу, обеспечивающую непроницаемость корпуса, и имеет не менее двух опор (под­шипников) по высоте. Нижняя опора располага­ется над гельмпортовой трубой и, как правило, имеет сальниковое уплотнение, препятствующее попаданию воды в корпус судна; верх­няя опора размещается непосредственно у места закрепления сектора или румпеля. Обычно верхняя опора (опорно-упорный подшипник) воспринимает массу баллера и пера руля, для чего на баллере делают кольцевой выступ.

Рулевые приводы . На судах морского флота эксплуатируются разнообразные рулевые приводы, среди которых преимущественное распространение получили рулевые машины с электрическими и гидравлическими приводами отечественного и зарубежного производства.

Они обеспечивают передачу усилий рулевого дви­гателя к баллеру. Среди них широко известны два основных типа приводов:

- механический секторно-румпельный при­­вод от электромотора (рис.213, 214);

Силовой плунжерный привод от гидро­ци­линдров (рис.215).

Рулевые передачи, посредством которых осу­ществляется связь поста управления с испол­ни­тель­ным механизмом рулевого привода, имеют различное устройство. На современных судах применяют в основном электрические и гидрав­лические передачи.

Рулевое устройство с механическим секторно-рум­пель­ным приводомприменяется на судах малого и среднего водоизмещения. Кинематическая схема передачи усилия от рулевой машины к перу руля этого привода хорошо показана на рис.213.

В таком приводе румпель жестко скреплен с баллером руля. Сектор, свободно наса­женный на баллер, связан с румпелем при помощи пружинного амортизатора, а с рулевым двигателем - зубчатой передачей. Пе­рекладка руля осуществляется электромотором через сектор и румпель, а динамические нагрузки от ударов волн гасятся аморти­за­то­рами.

Схема управления секторно-рулевой ма­шиной с электрической передачей при­ведена на рис.214.

В составсхемы управления рулевым устройством входят:

Пост управления со следящей элек­трической системой;

Электрическая передача от поста упра­вления к электромотору;

Основной пост управления находится в рулевой рубке у путе­вого компаса и репи­тера гирокомпаса. Штурвал или пульт управ­ления рулем монтируют обычно на одной колонке с авторулевым агрегатом. Основным элементом электрической передачи являются система контроллеров, помещенных в штур­вальной колонке и связанных элек­тропроводкой электродвигателем основного привода в румпельном отделении. Крутящий момент от электродвигателя передается на зубчатый сектор, соединенный с румпелем и баллером, через червячно-редукторную передачу. Все механизмы смонтированы в виде самостоятельного агрегата. Румпель крепится на баллере на двух шпонках и связан с сектором двумя пружинными амортизаторами.

Рулевые устройства с гидравлическим приводом в упрощенном виде показаны на

рис.215; 216). В его состав входят два (или четыре) гидроцилиндра, маслонасос, телемотор и гидросистема.

Работа устройства осуществляется сле­дующим образом. При вращении шту­рвала, размещенного в рулевой рубке, те­лединамический датчик по­ста управления фор­ми­рует командный сигнал в виде давления масла, которое гидросистемой нагне­тается в цилиндр те­ле­мо­тора. Под действием это­го сигнала телемотор при­во­дит в действие ры­ча­ж­ную систему обратной связи, которая открывает доступ силового масла в один из гидроцилиндров. При этом масло под давлением насоса перепускается из одного цилиндра в другой, двигая поршень и поворачивая румпель, баллер и перо руля в нужную сторону. После этого регулировочная тяга возвращается в нулевое положение, а датчик и репитор фиксируют новое положения руля.

Чтобы давление масла в гидроцилиндрах не повышалось при ударах о перо руля сильной волны или большой льдины, гидросистема снабжена предохранительными клапанами и амортизационными пружинами.

В случае выхода из строя телемотора управление рулевой машиной можно осуществлять из румпельного отделения вручную.

При выходе из строя обоих масляных насосов переходят на ручную перекладку руля, для чего трубы гидросистемы напрямую соединяют с гидроцилиндрами, создавая в них давление вращением штурвала в посту управления.

Более подробная схема управления рулевым устройством с двухплунжерной рулевой машиной приведена на рис. 215, а ее компоновка – на рис.217.

Схема гидропривода четырех плун­жерной рулевой машины с аналогич­ным принципом действия показана на рис.216. Эти машины получили наибольшее распространение на современных судах, так как они обеспечивают наивысший коэффициент полезного действия всего рулевого устройства. В них давление рабочего масла в гидроцилиндрах непосредственно пре­образуется сначала в поступательное движение плунжера, а затем через механическую передачу - во вращательное движение баллера руля, который жестко связан с рум­пелем. Необходимое давление масла и мощность рулевой машины формируется радиально-поршневыми насосами переменной производительности, а раздачу его по цилиндрам осуществляет телемотор, который получает команду от штурвала с рулевой рубки.

Рулевое устройство современных судов является достаточно точным, технически надежным и чувствительным. Рулевое устройство рассматривается как одно из наиболее важных устройств и систем управления судном, оказывающее непосредственное влияние на обеспечение безопасности плавания судна. Поэтому современное рулевое устройство строится по принципу «структурной избыточности» (дублирования) систем: если один из элементов рулевого устройства выходит из строя, то обычно хватает нескольких секунд (или десятков секунд) для того, чтобы перейти на альтернативное устройство управления рулем (при условии, что экипаж достаточно натренирован).

Поскольку рулевое устройство играет такую важную роль в обеспечении безопасности плавания судна, поскольку от него так много зависит, а судовые экипажи полагаются на него в такой большой степени, — огромное внимание уделяется вопросам создания эффективных и надежных конструкций рулевого устройства, правильности его монтажа и установки, грамотной технической эксплуатации и эффективному обслуживанию рулевого устройства, своевременному выполнению необходимых проверок, обеспечению должной натренированности экипажей (в первую очередь — судоводителей, электромехаников, матросов) в переходе с одного режима управления рулем на другой.

Основные требования к конструкции, установке и эксплуатации рулевого устройства на судне определены в следующих документах:

  1. «СОЛАС-74» — правила, касающиеся технических требований к рулевому устройству;
  2. «СОЛАС-74», Правило V/24, — «Использование системы управления курсом и/или системы управления судном по заданной траектории»;
  3. «СОЛАС-74», Правило V/25, — «Работа главного источника электрической энергии и/или рулевого привода»;
  4. «СОЛАС-74», Правило V/26, — «Рулевой привод: испытания и учения»;
  5. Правила Классификационных обществ, касающиеся рулевых устройств;
  6. Рекомендации по эксплуатационным требованиям к системам управления курсом (Резолюция MSC.64(67), Приложение 3, и Резолюция MSC.74(69), Приложение 2);
  7. «Bridge Procedures Guide», пп. 4.2, 4.3.1-4.3.3, Annex A7;
  8. Устав службы на судах Министерства морского флота Союза ССР;
  9. «РШС-89»;
  10. Документы и «Руководства» по «СУБ» конкретной судоходной компании;
  11. Дополнительные требования «Прибрежных Государств».

В соответствии с Правилом V/26(3.1), на ходовом мостике и в румпельном отделении судна должны быть постоянно вывешены простые инструкции по эксплуатации рулевого привода с блок-схемой, показывающей порядок переключения систем дистанционного управления рулевым приводом и силовых агрегатов рулевого привода.


Рулевое устройство: а - обыкновенный руль; b - балансирный руль; с - полубалансирный руль (полуподвесной); d - балансирный руль (подвесной); е - полубалансирный руль (полуподвесной)

«Международная палата судоходства» (ICS) разработала «Руководство по рутинным проверкам рулевого устройства», которое позднее в полном объеме вошло в Правило V/26 «СОЛАС-74»:

  • Дистанционное ручное управление рулем — должно быть опробовано всякий раз после продолжительного управления авторулевым и перед входом в районы, где судовождение требует особой осторожности;
  • Дублирующие силовые устройства управления рулем: в районах, где судовождение требует особой осторожности, следует использовать более одного силового устройства управления рулем, если возможна одновременная работа нескольких таких устройств;
  • Перед отходом из порта — в пределах 12 часов до отхода — выполнить проверки и опробовать рулевое устройство, включая, насколько это применимо, проверку работы следующих узлов и систем:
    • главное рулевое устройство;
    • вспомогательное рулевое устройство;
    • все системы контроля дистанционного управления рулем;
    • пост управления рулем на мостике;
    • аварийный источник питания;
    • соответствие показаний аксиометра действительным положениям пера руля;
    • предупредительная сигнализация об отсутствии питания в системе дистанционного управления рулем;
    • предупредительная сигнализация об отказе силового блока рулевого устройства;
    • другие средства автоматики.
  • Контроль и проверки — должны включать:
    • полную перекладку руля с борта на борт и ее соответствие требуемым характеристикам рулевого устройства;
    • визуальный осмотр рулевого устройства и его соединительных связей;
    • проверку связи между ходовым мостиком и румпельным отделением.
  • Процедуры перехода с одного режима управления рулем на другой: все члены судового комсостава, имеющие отношение к использованию и/или технической эксплуатации рулевого устройства, должны изучить эти процедуры;
  • Тренировки по аварийному управлению рулем — должны проводиться, по крайней мере, каждые три месяца и должны включать непосредственное управление рулем из румпельного отделения, процедуры связи из этого помещения с ходовым мостиком и, где это возможно, использование альтернативных источников питания;
  • Регистрация: в судовом журнале должны делаться записи о выполнении контроля и указанных проверок рулевого устройства, а также о проведении тренировок по аварийному управлению рулем.

ВПКМ должен в полном объеме выполнять требования по эксплуатации рулевого устройства и авторулевого, содержащиеся в нормативных и организационно-распорядительных документах.

ВПКМ контролирует правильность удержания судна на курсе авторулевым. Установка отсчет курса на авторулевом и поправки к нему выполняется в соответствии с инструкцией по эксплуатации авторулевого с обязательным участием ВПКМ, т. к. рулевой, самостоятельно устанавливая отсчет, следит за тем, чтобы рыскание судна было симметричным, и невольно вводит собственную поправку в заданный курс.


Сигнализация об отклонении судна от заданного курса, где она имеется, должна быть всегда включена, когда судно управляется авторулевым, и должна быть отрегулирована в соответствии с преобладающими погодными условиями.

Если сигнализация перестает использоваться, капитан должен быть немедленно поставлен в известность.

Использование сигнализации никоим образом не освобождает ВПКМ от обязанности часто контролировать точность удержания авторулевым заданного курса.

Несмотря на сказанное выше, вахтенный ПКМ всегда должен иметь в виду необходимость поставить человека на руль и заблаговременно перейти с автоматического управления рулем на ручное с тем, чтобы безопасным образом разрешить любую потенциально опасную ситуацию.

Если судно управляется авторулевым, то в высшей степени опасно позволить ситуации дойти до такой стадии, когда ВПКМ будет вынужден прервать непрерывное наблюдение, чтобы предпринять необходимые чрезвычайные действия без помощи рулевого.

Вахтенный ПКМ обязан:

  • Четко знать порядок перехода с автоматического управления рулем на ручное, а также на запасное и аварийное рулевое управление (все варианты перехода с одного способа управления рулем на другой должны быть ясно изображены на мостике);
  • Не менее одного раза за вахту осуществлять переход с автоматического управления рулем на ручное и обратно (переход всегда должен осуществляться либо самим вахтенным ПКМ, либо под его непосредственным контролем);
  • Во всех случаях опасного сближения с судами заблаговременно переходить на ручное управление рулем;
  • Плавание в стесненных водах, СРД, при ограниченной видимости, в штормовых условиях, во льдах и других сложных условиях осуществлять, как правило, при ручном управлении рулем (в необходимых случаях включать в работу второй насос гидравлического привода рулевой машины).

В соответствии с Правилом V/24 «СОЛАС-74», в районах высокой интенсивности, в условиях ограниченной видимости и во всех других опасных для плавания ситуациях, если используются системы управления курсом и/или по заданному пути, должна быть предусмотрена возможность немедленного перехода на ручное управление рулем.


Судовой мостик

В вышеупомянутых обстоятельствах вахтенный помощник капитана должен иметь возможность без промедления использовать для управления судном квалифицированного рулевого, который в любой момент должен быть готов приступить к управлению рулем.

Переход с автоматического управления рулем на ручное, и наоборот, должен производиться ответственным лицом командного состава или под его наблюдением.

Ручное управление рулем должно испытываться после каждого продолжительного использования систем управления курсом и/или по заданному пути, и перед входом в районы, где судовождение требует особой осторожности.

В районах, где судовождение требует особой осторожности, на судах должно работать более одного силового агрегата рулевого привода, если такие агрегаты могут работать одновременно.

Вахтенный помощник капитана должен отдавать отчет в том, что внезапный выход авторулевого из строя может повлечь риск столкновения с другим судно, посадки судна на мель (при плавании вблизи навигационных опасностей) либо другие неблагоприятные последствия. По этой же причине обеспечение технической надежности и грамотной эксплуатации авторулевых становится объектом все более пристального внимания.

Ситуация: Внезапный разворот лайнера «Norwegian Sky» у входа в пролив Хуан-де-Фука

19 мая 2001 года пассажирский лайнер «Norwegian Sky» (длина 258 м, водоизмещение 6000 тонн) следовал в канадский порт Ванкувер, имея на борту 2000 пассажиров. При входе в пролив Juan de Fuka судно на высокой скорости внезапно пошло на циркуляцию. Неожиданные динамические нагрузки в сочетании с креном судна до 8° привели к ранениям и травмам 78 пассажиров.

По сообщению Береговой Охраны США, которая производила расследование инцидента, внезапное изменение курса судна произошло в тот момент, когда старший помощник капитана (first officer) заподозрил ненадежную работу авторулевого. По информации, СПКМ отключил авторулевой, перешел на ручное управление рулем и вручную вернул судно на заданный курс. Расследование Береговой Охраны должно ответить на ключевой вопрос: когда же именно произошло внезапное изменение курса судна — пока судно управлялось авторулевым либо в процессе некорректного перехода на ручное управление рулем?

Предлагается к прочтению:

Рулевое устройство — совокупность механизмов, агрегатов и узлов, обеспечивающих управление судном. Основными конструктивными элементами любого рулевого устройства являются:
— рабочий орган — перо руля (руль) или поворотная направляющая насадка;
— баллер, соединяющий рабочий орган с рулевым приводом;
— рулевой привод, передающий усилие от рулевой машины к рабочему органу;
— рулевая машина, создающая усилие для поворота рабочего органа;
— привод управления, связывающий рулевую машину с постом управления.
На современных судах устанавливают пустотелые обтекаемые рули, состоящие из горизонтальных ребер и вертикальных диафрагм, покрытых стальной обшивкой (рис. 4). Обшивку крепят к раме электрозаклепками. Внутреннее пространство руля заполняют смолистыми веществами или самовспенивающимся пенополиуретаном ППУ3С.
Рули бывают в зависимости от расположения оси вращения:
1) балансирные (рис. 4, 6), ось вращения проходит через перо руля;
2) небалансирные (рис. 5), ось вращения совпадает с передней кромкой пера;
3) полубалансирные рули.
Момент сопротивления повороту балансирного или полубалансирного руля меньше, чем небалансирного, и соответственно меньше требуемая мощность рулевой машины.
По способу крепления рули разделяют на:
1) Подвесные, которые крепят горизонтальным фланцевым соединением к баллеру и устанавливают только на малых и малых маломерных добывающих судах.
2) простые.
Простой одноопорный балансирный руль (см. рис. 4) штырем упирается в упорный стакан пятки ахтерштевня. Для уменьшения трения цилиндрическая часть штыря имеет бронзовую облицовку, а в пятку ахтерштевня вставлена бронзовая втулка. Соединение руля с баллером — горизонтальное фланцевое на шести болтах или конусное. При конусном соединении коническая концевая часть баллера вставляется в конусное отверстие верхней торцевой диафрагмы руля и плотно затягивается гайкой, доступ к которой обеспечивается через крышку, поставленную на винтах, входящих в обшивку руля. Изогнутый баллер дает возможность раздельного демонтажа руля и баллера (при их взаимном развороте).
Простой двухопорный небалансирный руль (рис. 5) сверху закрыт листовой диафрагмой и литой головкой, имеющей фланец для соединения руля с баллером и петлю под верхнюю штыревую опору. В петлю рудерпоста вставляют бакаутовые, бронзовые или другие втулки.
Недостаточная жесткость нижней опоры балансирных рулей часто становится причиной вибрации кормы судна и руля. Этот недостаток отсутствует у балансирного руля со съемным рудерпостом (рис. 6). В перо такого руля вмонтирована труба, через которую проходит съемный рудерпост. Нижний конец рудерпоста закрепляют конусом в пятке ахтерштевня, а верхний крепят фланцем к ахтерштевню. Внутри трубы устанавливают подшипники. Рудерпост в местах прохождения через подшипники имеет бронзовую облицовку. Крепление руля к баллеру — фланцевое.
В пере активного руля (рис. 7) помещен вспомогательный гребной винт. При перекладке руля направление упора вспомогательного винта изменяется и возникает дополнительный момент, поворачивающий судно.
Направление вращения вспомогательного винта противоположно направлению вращения основного. Электродвигатель размещается в пере руля или в румпельном отделении. В последнем случае электродвигатель непосредственно соединен с вертикальным валом, передающим вращение редуктору движителя. Винт активного руля может обеспечить судну ско-рость до 5 уз.
На многих судах промыслового флота вместо руля устанавливают поворотную направляющую насадку (рис. 8), которая создает такую же, как и руль, боковую силу при меньших углах перекладки. Причем момент на бал-лере насадки примерно в два раза меньше момента на баллере руля. Для обеспечения устойчивого положения насадки при перекладках и увеличения ее рулевого действия к хвостовой части насадки в плоскости оси баллера крепят стабилизатор. Конструкция и крепление насадки аналогичны конструкции и креплению балансирного руля.

Рис.4 Рабочие органы рулевых устройств: руль одноопорный балансирный.
1 - баллер; 2 - фланец; 3 - обшивка пера руля; 4 - наделка-обтекатель; 5 - вертикальная диафрагма; 6 - горизонтальное ребро; 7 - пятка ахтерштевня; 8 - гайка; 9 - шайба; 10 - рулевой штырь; 11 - бронзовая облицовка штыря; 12 - бронзовая втулка (подшипник); 13 - упорный стакан; 14 - канал для демонтажа упорного стакана.

Рис.5. Рабочие органы рулевых устройств: руль двухопорный небалансирный.
1 - баллер; 2 - фланец; 3 - обшивка пера руля; 7 - пятка ахтерштевня; 8 - гайка; 9 - шайба; 10 - рулевой штырь; 11 - бронзовая облицовка штыря; 12 - бронзовая втулка (подшипник); 15 - гельмпортовая труба; 17 - рудерпост; 18 - бакаут.

Рис.6 Руль балансирный со съемным рудерпостом.
1 - баллер; 3 - обшивка пера руля; 7 - пятка ахтерштевня; 11 - бронзовая облицовка штыря; 12 - бронзовая втулка (подшипник); 15 - гельмпортовая труба; 19 - фланец рудерпоста; 20 — съемный рудерпост; 21 — вертикальная труба.

Рис. 7 Активный руль.
3 - обшивка пера руля; 4 - наделка-обтекатель; 23 - редуктор с обтекателем; 24 - стабилизатор;

Баллер — изогнутый или прямой стальной цилиндрический брус, выведенный через гельмпортовую трубу в румпельное отделение. Соединение гельмпортовой трубы с наружной обшивкой и настилом палубы — водонепроницаемое. В верхней части трубы устанавливают уплотнительный сальник и подшипники баллера, которые могут быть опорными и упорными.
Рулевое устройство должно иметь приводы: главный и вспомогатель-ный, а при их расположении ниже грузовой ватерлинии дополнительный аварийный, размещенный выше палубы переборок. Вместо вспомогательного привода допускается установка сдвоенного главного, состоящего из двух автономных агрегатов. Все приводы должны действовать независимо друг от друга, но, как исключение, допускается наличие у них некоторых общих деталей. Главный привод должен работать от источников энергии, вспомогательный может быть ручным.
Конструкция привода руля зависит от типа рулевой машины. На судах промыслового флота устанавливают электрические и электрогидравлические рулевые машины. Первые выполняют в виде электродвигателя постоянного тока, вторые — в виде комплекса электродвигатель — насос в сочетании с плунжерным, лопастным или винтовым гидравлическим приводом. Ручные рулевые машины в сочетании с штуртросовым, валиковым или гидравлическим рулевым приводом встречаются только на малых и маломерных добывающих судах.
Дистанционное управление рулевой машиной из рулевой рубки обеспечивают телединамические передачи, называемые рулевыми телепередача-ми или рулевыми телемоторами. На современных промысловых судах нашли применение гидравлические и электрические рулевые телепередачи. Часто они дублируются или комбинируются в электрогидравлические.
Электрическая телепередача состоит из специального контроллера, расположенного в рулевой тумбе и связанного электрической системой с пусковым устройством рулевой машины. Управление контроллером осу-ществляется с помощью штурвала, рукоятки или кнопки.
Гидравлическая телепередача состоит из ручного насоса, приводимого в работу штурвалом, и системы трубок, связывающих насос с пусковым устройством рулевой машины. Рабочей жидкостью системы служат незамерзающая смесь воды с глицерином или минеральное масло.
Управление главным и вспомогательным рулевыми приводами независимо и производится с ходового мостика, а также из румпельного отделения. Время перехода с главного на вспомогательный привод не должно превышать 2 мин. При наличии постов управления главным рулевым приводом в рулевой и промысловой рубках выход из строя системы управления с одного поста не должен препятствовать управлению с другого поста.
Угол перекладки руля определяют по установленному у каждого поста управления аксиометру. Кроме того, на секторе рулевого привода или других деталях, жестко связанных с баллером, наносят шкалу для определения действительного положения руля. Автоматическую согласованность между скоростью, направлением вращения и положением штурвала и скоростью, стороной и углом перекладки руля обеспечивает сервомотор.
Тормоз (стопор) руля предназначен для удержания руля при аварийном ремонте или при переходе с одного привода на другой. Наиболее часто применяют ленточный стопор, зажимающий непосредственно баллер руля. Секторные приводы имеют колодочные стопоры, в которых тормозная колодка прижимается к специальной дуге на секторе. В гидравлических приводах роль стопора выполняют клапаны, перекрывающие доступ рабочей жидкости к приводам.
Удержание судна на заданном курсе при благоприятных погодных условиях без участия рулевого обеспечивает авторулевой, принцип работы кото-рого основан на применении гирокомпаса или магнитного компаса. Органы обычного управления связаны с авторулевым. Когда судно ложится на заданный курс, руль по аксиометру устанавливают в нулевое положение и включают авторулевой. Если под действием ветра, волнения или течения судно отклоняется от заданного курса, электродвигатель системы, получив импульс от датчика компаса, обеспечивает возвращение судна на заданный курс. При изменении курса или маневрировании авторулевой отключают и переходят на обычное рулевое управление.
Общие требования Регистра к рулевому устройству следующие:
— Каждое судно, за исключением судовых барж, должно иметь надежное устройство, обеспечивающее его поворотливость и устойчивость на курсе: рулевое устройство, устройство с поворотной насадкой и другие;
— С учетом назначения и особенной эксплуатации судна допускается использование указанных устройств совместно со средствами активного управления судном (САУС).
— Время перекладки полностью погруженного руля или поворотной насадки главным приводом (при наибольшей скорости переднего хода) с 35° одного борта на 30° другого не должно превышать 28 с, вспомогательным (при скорости, равной половине наибольшей скорости переднего хода или 7 узлов, в зависимости от того, какое значение больше) с 15° одного борта на 15° другого — 60 с, аварийным (при скорости не менее 4 узлов) не ограничивается.
В Регистре Части III Главы 2 изложены требования, предъявляемые ко всем элементам рулевого устройства, даны формулы для расчета эффектив-ности и рулей и поворотных насадок.


Конструкция рулей

Поворот судна выполняется с помощью руля, который установлен в корме судна. При отклонении или, как принято говорить, при перекладке руля на тот или иной борт на руль будет действовать сила давления воды. Эта сила создает вращающий момент, поворачивающий судно в сторону того борта, на который был переложен руль. Чтобы переложить руль, к нему прикладывают некоторый момент, величина которого, а следовательно, и мощность рулевой машины зависят от силы давления воды на руль и отстояния точки приложения равнодействующей сил давления от оси вращения.

В зависимости от расположения оси вращения рули делятся на два типа (рис. 73): небалансирные и балансирные. Ось вращения небалансирного руля проходит по передней кромке пера руля, а балансирного - через перо руля. У балансирного руля точка приложения сил давления находится ближе к оси вращения, поэтому для его перекладки нужна меньшая мощность, что является существенным преимуществом.

Перо руля на судах старой постройки выполняли из толстого стального листа, подкрепленного коваными ребрами. Такие плоские рули при движении судна создавали значительное сопротивление и сейчас применяются редко (на мощных ледоколах) .

Рис. 73. Типы рулей: а - небалансирный; б - балансирный

Современные суда в основном имеют пустотелые (обтекаемые) рули (рис. 74), перо которых состоит из рамы, с двух сторон обшитой лист>-вой сталью. Такая конструкция уменьшает сопротивление воды движению судна. Для еще большего уменьшения сопротивления потоку воды к перу руля на уровне гребного вала добавляется иногда обтекатель в виде грушевидной наделки.

Рама пустотелого руля состоит из горизонтальных ребер и вертикальных диафрагм. Сверху и снизу перо руля закрыто торцовыми листами. Внутреннее пространство для обеспечения водонепроницаемости и защиты от коррозии заполняют смолистым веществом или самовспенивающимся пенополиуретаном.

В верхней части перо руля на фланцах или с помощью конуса соединено с баллером. При фланцевом соединении на нижнем конце баллера и в верхней части пера руля имеются горизонтальные фланцы, скрепленные болтами. Иногда баллер внизу конусный и вставлен в такое же отверстие верхней части пера руля. Так как фланец обычно несколько смещен относительно оси вращения, то образуется плечо, облегчающее поворот руля.

Верхний конец баллера выведен на одну из палуб, на которой расположен рулевой привод. Чтобы вода не проникала в корпус судна через вырез для пропуска баллера, последний помещают в гельмпортовую трубу, соединение которой с наружной обшивкой и настилом палубы водонепроницаемо. В верхней части трубы устанавливают сальник, предотвращающий попадание воды в корпус судна. Выше сальника ставят подшипник, который является верхней опорой баллера руля. В зависимости от способа крепления к корпусу судна рули бывают навесные, подвесные, полуподвесные и со съемным рудерпостом.

Рис. 74. Перо пустотелого руля: 1- баллер; 2- фланеи; 3- торцовый лист; 4-грушевидная наделка-обтекатель; 5- вертикальные диафрагмы; б - горизонтальные ребра; 7-обшивка

Рис. 75. Рули; а-навесной; б - подвесной; в - полуподвесной, г - со съемным рудерпостом; /-гельмпортовая труба; 2- баллер; 3- фланец; 4- рулевая петля, 5- съемный кожух; 6- рудерпост; 7- подпятник; 8- перо руля; 9- гайка; 10- шайба; 11- рулевой штырь; 12- бронзовая облицовка; 13- бакаут; 14- бронзовая втулка; 15- упорный стакан; 16- упорно-опорный подшипник; 17- гельмпортовая труба; 18- упор; 19- подшипник; 20- корпус; 21- сальник; 22- упорно-опорный подшипник; 23- обтекатель; 24- конус баллера; 25- конусное гнездо пера руля; 26- фланец рудерпоста; 27-съемный рудерпост; 28- вертикальная труба

Навесной руль (рис. 75, а) навешивают на рудерпост при помощи рулевых штырей. Нижняя часть штыря имеет цилиндрическую форму, а верхняя - коническую с небольшим уклоном. Часть штыря, расположенная выше конуса, имеет резьбу. Штырь конической частью вводят в отверстие рулевой петли и затягивают гайкой, что обеспечивает его плотную посадку. В петли рудерпоста штыри ставят с небольшим зазором, поэтому они могут свободно вращаться. Для уменьшения трения цилиндрическая часть штыря имеет бронзовую облицовку, а петля рудерпоста - втулку из бакаута или текстолита. В подпятник для уменьшения трения под штырь ставят упорный стакан, который воспринимает вертикальную нагрузку.

Обтекаемый навесной руль обычно навешивают на рудерпост на двух штырях, что дает возможность почти вплотную приблизить перо руля к рудерпосту и уменьшить вихреобразование в зазоре между рудерпостом и рулем. Рудерпост в этом случае имеет обтекаемую форму, что дополнительно уменьшает сопротивление воды. На ледоколах руль навешивают на 3-4 штыря, что повышает надежность крепления.

Перо подвесного руля (рис. 75, б) не имеет опор и поддерживается только баллером, который опирается на опорные и упорные подшипники, установленные внутри корпуса.

Перо полуподвесного руля (рис. 75, в) имеет только один штырь в нижней части пера руля. В верхней части перо руля поддерживается баллером. Вертикальная нагрузка у полуподвесного руля может передаваться как на штырь, так и на баллер. В первом случае штырь в подпятнике Д9лжен опираться на упорный стакан, а во втором баллер снабжают упорным подшипником.

В последнее время все более широкое распространение получают рули со съемным рудерпостом (рис. 75, г). Перо такого руля имеет открытую

Вертикальную трубу, через которую проходит съемный рудерпост. Нижним концом рудерпост закрепляют конусом в подпятнике, а верхним фланцем крепят к ахтерштевню. Так как рудерпост в этом случае является осью, на которой вращается руль, то внутри трубы устанавливают подшипники, а рудерпост в этих местах имеет бронзовую облицовку.

Назначение технических средств управления

На судах ВВП и их типы.

Основные требования к технических средствам управления для судов внутреннего и смешанного (река-море) плавания определяются правилами Российского речного Регистра (РРР), Федерального органа классификации судов внутреннего и смешанного (река-море) плавания. В этих требованиях учитывается тип и класс судов.

Технических средства управления предназначены для обеспечения движения, управления и удержания судна на заданной линии пути. К ним относятся:

Система управления двигательно–движетельной установкой;

Рулевое устройство;

Якорное и швартовое устройства.

Одним из основных элементов технических средств управления является рулевое устройство.

Рулевое устройство служит для изменения направления движения судна и удержания судна на линии заданного пути.

Оно состоит:

Из органа управления (штурвал, джойстик);

Системой передачи;

Исполнительных элементов.

Управляемость судов обеспечивается с помощью исполнительных элементов рулевых устройств. В качестве исполнительных элементов рулевых устройств на судах ВВП могут применяться:

Рули различных типов;

Поворотные винтовые насадки;

Водометные движетельно-рулевые устройства.

Кроме того на некоторых типах судов могут применяться:

Подрулевающие устройства;

Крыльчатые движетельно-рулевые устройства;

Активные и фланкирующие рули.

Рули судов, их формы и типы.

Наибольшее распространение в качестве исполнительного элемента получили рули различных типов.

В состав руля может входить: перо руля, опоры, подвесы, баллер, румпель и др. вспомогательные устройства (сорлинь, гельмпорт, рудерпис).

Р у л и в зависимости от его формы и расположения оси вращения подразделяют на простые, полубалансирные и балансирные; по количеству опор – на подвесные, одноопорные и многоопорные. У простого руля все перо расположено сзади от оси баллера, у полубалансирного и балансирного рулей часть пера расположена впереди от оси баллера, образуя полубалансирную и балансирую части (рис.4.1).

По форме профиля рули подразделяются на пластичные и обтекаемые (профилированные). Наибольшее распространение на судах внутреннего плавания нашли балансирные обтекаемые прямоугольные рули.

Руль характеризуется: высотой h p – расстоянием, измеренным по оси баллера, между нижней кромкой руля и точкой пересечения оси баллера с верхней частью контура руля; длиной l p руля; смещением Δ l p части площади руля вперед относительно оси баллера (у полубалансирных рулей обычно Δ l p до 1/3 l p , у балансирных Δ l p до 1/2 l p ).

Рис.4.1 Рули

Важнейшей характеристикой пера руля является его суммарная площадь ∑S p . Фактическая площадь руля характеризуется выражением

S p ф = h p · l p (4.1)

Суммарная требуемая площадь руля, обеспечивающая управляемость судна выражается уравнением

S p т = LT (4.2)

где - коэффициент пропорциональности;

L – длина судна;

Т – наибольшая осадку судна.

Для обеспечения управляемости судна требуемая суммарная площадь руля должна быть равна фактической площади руля, т.е.