Основные загрязняющие вещества, присутствующие в выбросах автотранспорта. Расчет выбросов загрязняющих веществ от автотранспорта Выбросы транспорта

Угарный газ и оксиды азота, столь интенсивно выделяемые на первый взгляд невинным голубоватым дымком глушителя автомобиля – вот одна из основных причин головных болей, усталости, немотивированного раздражения, низкой трудоспособности. Сернистый газ способен воздействовать на генетический аппарат, способствуя бесплодию и врожденным уродствам, а все вместе эти факторы ведут к стрессам, нервным проявлениям, стремлению к уединению, безразличию к самым близким людям. В больших городах также более широко распространены заболевания органов кровообращения и дыхания, инфаркты, гипертония и новообразования. По расчетам специалистов, «вклад» автомобильного транспорта в атмосферу составляет до 90% по оксиду углерода и 70 % по оксиду азота. Автомобиль также добавляет в почву и воздух тяжелые металлы и другие вредные вещества.

Основными источниками загрязнения воздушной среды автомобилей являются отработавшие газы ДВС, картерные газы, топливные испарения.

Двигатель внутреннего сгорания – это тепловой двигатель, в котором химическая энергия топлива преобразуется в механическую работу. По виду применяемого топлива ДВС подразделяют на двигатели, работающие на

бензине, газе и дизельном топливе. По способу воспламенения горючие смеси ДВС бывают с воспламенением от сжатия (дизели) и с воспламенением от искровой свечи зажигания.

Дизельное топливо представляет собой смесь углеводородов нефти с температурами кипения от 200 до 3500С. Дизельное топливо должно иметь определенную вязкость и самовоспламеняемость, быть химически стабильным, при сгорании иметь минимальную дымность и токсичность. Для улучшения этих свойств в топлива вводят присадки, антидымные или многофункциональные.

Образование токсичных веществ – продуктов неполного сгорания и оксидов азота в цилиндре двигателя в процессе сгорания происходит принципиально различными путями. Первая группа токсичных веществ связана с химическими реакциями окисления топлива, протекающими как в предпламенный период, так и в процессе сгорания – расширения. Вторая группа токсичных веществ образуется при соединении азота и избыточного кислорода в продуктах сгорания. Реакция образования оксидов азота носит термический характер и не связана непосредственно с реакциями окисления топлива. Поэтому рассмотрение механизма образования данных токсичных веществ целесообразно вести раздельно.

К основным токсичным выбросам автомобиля относятся:

отработавшие газы (ОГ), картерные газы и топливные испарения. Отработавшие газы, выбрасываемые двигателем, содержат оксид углерода (СО), углеводороды (СХHY), оксиды азота (NOX), бенз(а)пирен, альдегиды и сажу. Картерные газы – это смесь части отработавших газов, проникшей

через неплотности поршневых колец в картер двигателя, с парами моторного масла. Топливные испарения поступают в окружающую среду из системы питания двигателя: стыков, шлангов и т.д. Распределение основных компонентов выбросов у карбюраторного двигателя следующее: отработавшие газы содержат 95 % СО, 55 % СХHY и 98 % NOX, картерные газы по – 5 % СХHY, 2 % NOX, а топливные испарения – до 40 % СХHY.

внутреннего сгорания представлено в табл.3.1.

Таблица 3.1

Компоненты

Доля токсичного компонента в ОГ ДВС

Карбюраторные

Дизельные

топлива, кг

топлива, кг

Бенз(а)пирен

до 10 мкг/м3

Альдегиды

до 0,04 г/м3

В общем случае в составе отработавших газов двигателей могут содержаться следующие нетоксичные и токсичные компоненты: О, О2, О3, С, СО, СО2, СН4, CnHm, CnHmО, NO, NO2, N, N2, NH3, HNO3, HCN, H, H2, OH, H2O.

Основными токсичными веществами – продуктами неполного сгорания

являются сажа, оксид углерода, углеводороды, альдегиды.

Вредные токсичные выбросы можно разделить на регламентированные и нерегламентированные. Они действуют на организм человека по-разному. Вредные токсичные выбросы: СО, NOX, CXHY, RXCHO, SO2, сажа, дым.

СО (оксид углерода) – этот газ без цвета и запаха, более легкий, чем воздух. Образуется на поверхности поршня и на стенке цилиндра, в котором активация не происходит вследствие интенсивного теплоотвода стенки,

плохого распыления топлива и диссоциации СО2 на СО и О2 при высоких температурах.

Во время работы дизеля концентрация СО незначительна (0,1…0,2 %).

У карбюраторных двигателей при работе на холостом ходу и малых нагрузках содержание СО достигает 5…8 % из-за работы на обогащенных

смесях. Это достигается для того, чтобы при плохих условиях смесеобразование обеспечить требуемое для воспламенения и сгорания

число испарившихся молекул.

NOX (оксиды азота) – самый токсичный газ из ОГ.

N2 (азот) – инертный газ при нормальных условиях. Активно реагирует

с кислородом при высоких температурах.

Выброс с ОГ зависит от температуры среды. Чем больше нагрузка двигателя, тем выше температура в камере сгорания, и соответственно

увеличивается выброс оксидов азота.

Кроме того, температура в зоне горения (камера сгорания) во многом зависит от состава смеси. Слишком обедненная или обогащенная смесь при горении выделяет меньшее количество теплоты, процесс сгорания

замедляется и сопровождается большими потерями теплоты в стенке, т.е. в таких условиях выделяется меньшее количество NOx, а выбросы растут, когда состав смеси близок к стехиометрическому (1 кг топлива к 15 кг воздуха). Для дизельных двигателей состав NOx зависит от угла опережения впрыска топлива и периода задержки воспламенения топлива. С увеличением угла опережения впрыска топлива удлиняется период задержки воспламенения, улучшается однородность топливовоздушной смеси, большее количество топлива испаряется, и при сгорании резко (в 3 раза) увеличивается температура, т.е. увеличивается количество NOx.

Кроме того, с уменьшением угла опережения впрыска топлива можно

существенно снизить выделение оксидов азота, но при этом значительно ухудшаются мощностные и экономические показатели.

Углеводороды (СxНy) – этан, метан, бензол, ацетилен и др. токсичные элементы. ОГ содержат около 200 разных углеводородов.

В дизельных двигателях СxНy образуются в камере сгорания из-за гетерогенной смеси, т.е. пламя гаснет в очень богатой смеси, где не хватает воздуха за счет неправильной турбулентности, низкой температуры, плохого распыления.

ДВС выбрасывает большее количество СxНy, когда работает в режиме холостого хода, за счет плохой турбулентности и уменьшения скорости сгорания.

Дым – непрозрачный газ. Дым может быть белым, синим, черным.

Цвет зависит от состояния ОГ.

Белый и синий дым – это смесь капли топлива с микроскопическим количеством пара; образуется из-за неполного сгорания и последующей

конденсации.

Белый дым образуется, когда двигатель находится в холодном состоянии, а потом исчезает из-за нагрева. Отличие белого дыма от синего определяется размером капли: если диаметр капли больше длины волны

синего цвета, то глаз воспринимает дым как белый.

К факторам, определяющим возникновение белого и синего дыма, а также его запах в ОГ, относятся температура двигателя, метод образования

смеси, топливные характеристики (цвет капли зависит от температуры ее образования: при увеличении температуры топлива дым приобретает синий цвет, т.е. уменьшается размер капли).

Кроме того, бывает синий дым от масла.

Наличие дыма показывает, что температура недостаточна для полного сгорания топлива.

Черный дым состоит из сажи.

Дым отрицательно влияет на организм человека, животных и растительность.

Сажа – представляет собой бесформенное тело без кристаллической решетки; в ОГ дизельного двигателя сажа состоит из неопределенных частице с размерами 0,3...100 мкм.

Причина образования сажи заключается в том, что энергетические

условия в цилиндре дизельного двигателя оказываются достаточными, чтобы молекула топлива разрушилась полностью. Более легкие атомы водорода диффундируют в богатый кислородом слой, вступают с ним в реакцию и как бы изолируют углеводородные атомы от контакта с кислородом.

Образование сажи зависит от температуры, давления в камере сгорания, типа топлива, отношения топливо-воздух.

Количество сажи зависит от температуры в зоне сгорания.

Существуют другие факторы образования сажи – зоны обогащенной смеси и зоны контакта топлива с холодной стенкой, а также неправильная

турбулизация смеси.

Скорость сжигания сажи зависит от размера частиц, например, сажа сжигается полностью при размере частиц меньше 0,01 мкм.

SO2 (оксид серы) – образуется во время работы двигателя из топлива, получаемого из сернистой нефти (особенно в дизелях); эти выбросы раздражают глаза, органы дыхания.

SO2,H2S – очень опасны для растительности.

Главным загрязнителем атмосферного воздуха свинцом в Российской

Федерации в настоящее время является автотранспорт, использующий этилированный бензин: от 70 до 87 % общей эмиссии свинца по различным

оценкам. РbО (оксиды свинца) – возникают в ОГ карбюраторных двигателей, когда используется этилированный бензин, чтобы увеличить октановое число для уменьшения детонации (это очень быстрое, взрывное сгорание

отдельных участков рабочей смеси в цилиндрах двигателя со скоростью распространения пламени до 3000 м/с, сопровождающееся значительным повышением давления газов). При сжигании одной тонны этилированного бензина в атмосферу выбрасывается приблизительно 0,5...0,85 кг оксидов

свинца. По предварительным данным, проблема загрязнения окружающей среды свинцом от выбросов автотранспорта становится значимой в городах с населением свыше 100 000 человек и для локальных участков вдоль

автотрасс с интенсивным движением. Радикальный метод борьбы с загрязнением окружающей среды свинцом выбросами автомобильного транспорта – отказ от использования этилированных бензинов. По данным

1995г. 9 из 25 нефтеперерабатывающих заводов России перешли на выпуск

неэтилированных бензинов. В 1997 году доля неэтилированного бензина в общем объеме производства составила 68%. Однако, из-за финансовых и организационных трудностей полный отказ от производства этилированных бензинов в стране задерживается.

Альдегиды (RxCHO) – образуются, когда топливо сжигается при низких температурах или смесь очень бедная, а также из-за окисления тонкого слоя масла в стенке цилиндра.

При сжигании топлива при высоких температурах альдегиды исчезают.

Загрязнение воздуха идет по трем каналам: 1) ОГ, выбрасываемые через выхлопную трубу (65 %); 2) картерные газы (20 %); 3) углеводороды в

результате испарения топлива из бака, карбюратора и трубопроводов (15 %).

Каждый автомобиль выбрасывает в атмосферу с отработавшими газами около 200 различных компонентов. Самая большая группа соединений –

углеводороды. Эффект падения концентраций атмосферных загрязнений, то есть приближение к нормальному состоянию, связан не только с

разбавлением выхлопных газов воздухом, но и со способностью самоочищения атмосферы. В основе самоочищения лежат различные физические, физико-химические и химические процессы. Выпадение

тяжелых взвешенных частиц (седиментация) быстро освобождает атмосферу только от грубых частиц. Процессы нейтрализации и связывания газов в атмосфере проходят гораздо медленнее. Значительную роль в этом играет

зеленая растительность, поскольку между растениями идет интенсивный газообмен. Скорость газообмена между растительным миром в 25…30 раз превышает скорость газообмена между человеком и ОС в расчете на единицу массы активно функционирующих органов. Количество атмосферных

осадков оказывает сильное влияние на процесс восстановления. Они растворяют газы, соли, адсорбируют и осаждают на земную поверхность пылевидные частицы.

Автомобильные выбросы распространяются и трансформируются в атмосфере по определенным закономерностям.

Так, твердые частицы размером более 0,1 мм оседают на

подстилающих поверхностях в основном из-за действия гравитационных сил.

Частицы, размер которых менее 0,1 мм, a также газовые примеси в виде CO, СХНУ, NOX, SOX распространяются в атмосфере под воздействием процессов диффузии. Они вступают в процессы физико-химического взаимодействия между собой и с компонентами атмосферы, и их действие проявляется на локальных территориях в пределах определенных регионов.

В этом случае рассеивание примесей в атмосфере является неотъемлемой частью процесса загрязнения и зависит от многих факторов.

Степень загрязнения атмосферного воздуха выбросами объектов АТК

зависит от возможности переноса рассматриваемых загрязняющих веществ на значительные расстояния, уровня их химической активности,

метеорологических условий распространения.

Компоненты вредных выбросов с повышенной реакционной способностью, попадая в свободную атмосферу, взаимодействуют между

собой и компонентами атмосферного воздуха. При этом различают физическое, химическое и фотохимическое взаимодействия.

Примеры физического реагирования: конденсация паров кислот во влажном воздухе с образованием аэрозоля, уменьшение размеров капель жидкости в результате испарения в сухом теплом воздухе. Жидкие и твердые

частицы могут объединяться, адсорбировать или растворять газообразные вещества.

Реакции синтеза и распада, окисления и восстановления осуществляются между газообразными компонентами загрязняющих веществ

и атмосферным воздухом. Некоторые процессы химических преобразований начинаются непосредственно с момента поступления выбросов в атмосферу, другие – при появлении для этого благоприятных условий – необходимых

реагентов, солнечного излучения, других факторов.

При выполнении транспортной работы существенным является выброс соединений углерода в виде CO и СХНУ.

Моноксид углерода в атмосфере быстро диффундирует и обычно не создает высокой концентрации. Его интенсивно поглощают почвенные микроорганизмы; в атмосфере он может окисляться до СО2 при наличии примесей - сильных окислителей (О,О3), перекисных соединений и свободных радикалов.

Углеводороды в атмосфере подвергаются различным превращениям (окислению, полимеризации), взаимодействуя с другими атмосферными загрязнениями, прежде всего под действием солнечной радиации. В результате этих реакций образуются перекиси, свободные радикалы, соединения с оксидами азота и серы.

В свободной атмосфере сернистый газ (SО2) через некоторое время окисляется до сернистого ангидрида (SО3) или вступает во взаимодействие с другими соединениями, в частности углеводородами. Окисление сернистого ангидрида в серный происходит в свободной атмосфере при фотохимических и каталитических реакциях. В обоих случаях конечным продуктом является аэрозоль или раствор серной кислоты в дождевой воде.

B сухом воздухе окисление сернистого газа происходит крайне медленно. В темноте окисления SO2 не наблюдается. При наличии в воздухе оксидов азота скорость окисления сернистого ангидрида увеличивается независимо от влажности воздуха.

Сероводород и сероуглерод при взаимодействии с другими загрязнителями подвергаются в свободной атмосфере медленному окислению до серного ангидрида. Сернистый ангидрид может адсорбироваться на поверхности твердых частиц из оксидов металлов, гидрооксидов или карбонатов и окисляться до сульфата.

Соединения азота, поступающие в атмосферу от объектов АТК, представлены в основном NO и NO2. Выделяемый в атмосферу моноксид азота под воздействием солнечного света интенсивно окисляется атмосферным кислородом до диоксида азота. Кинетика дальнейших превращений диоксида азота определяется его способностью поглощать

ультрафиолетовые лучи и диссоциировать на моноксид азота и атомарный кислород в процессах фотохимического смога.

Фотохимический смог – это комплексная смесь, образующаяся при воздействии солнечного света из двух основных компонентов выбросов автомобильных двигателей – NO и углеводородных соединений. Другие

вещества (SO2), твердые частицы также могут участвовать в смоге, но не являются основными носителями высокого уровня окислительной активности, характерной для смога. Стабильные метеорологические условия благоприятствуют развитию смога:

Городские эмиссии удерживаются в атмосфере в результате инверсии,

Служащей своеобразной крышкой на сосуде с реактивами,

Увеличивая продолжительность контакта и реакции,

Препятствуя рассеиванию (новые эмиссии и реакции добавляются к первоначальным).

Рис.3.1. Фотохимический смог

Формирование смога и образование оксиданта обычно останавливается при прекращении солнечной радиации в темное время суток и дисперсии реагентов и продуктов реакции.

В Москве при обычных условиях концентрация тропосферного озона,

который является предвестником образования фотохимического смога, достаточно низкая. Оценки показывают, что генерация озона из оксидов азота и углеводородных соединений вследствие переноса воздушных масс и повышение его концентрации, и следовательно, неблагоприятное воздействие происходит на расстоянии 300…500 км от Москвы (в районе Нижнего Новгорода).

Помимо метеорологических факторов самоочищения атмосферы

некоторые компоненты вредных выбросов автомобильного транспорта участвуют в процессах взаимодействия с компонентами воздушной среды, результатом которых является возникновение новых вредных веществ (вторичные атмосферные загрязнители). Загрязнители вступают с компонентами атмосферного воздуха в физическое, химическое и фотохимическое взаимодействия.

Многообразие продуктов выхлопов автомобильных двигателей может быть классифицировано по группам, сходным по характеру воздействия на организмы или химической структуре и свойствам:

1) нетоксичные вещества: азот, кислород, водород, водяной пар и углекислый газ, содержание которых в атмосфере в обычных условиях не достигает уровня, вредного для человека;

2) моноксид углерода, наличие которого характерно для выхлопов бензиновых двигателей;

3) оксиды азота (~98 % NО, ~2 % NO2), которые по мере пребывания в атмосфере соединяются с кислородом;

4) углеводороды (алкаин, алкены, алкадиены, цикланы, ароматические соединения);

5) альдегиды;

7) соединения свинца.

8) серистый ангидрид.

Чувствительность населения к действию загрязнения атмосферы зависит от большого числа факторов, в том числе от возраста, пола, общего состояния здоровья, питания, температуры и влажности и т.д. Лица пожилого

возраста, дети, больные, курильщики, страдающие хроническим бронхитом,

коронарной недостаточностью, астмой, являются более уязвимыми.

Общая схема реакции организма на воздействие загрязнителей ОС по данным Всемирной организации здравоохранения (ВОЗ) представлена на

рис.3.2.

Рис. 3.2. Реакция организма на воздействие загрязнителей воздуха:

1 – смертность; 2 – заболеваемость; 3 – физиологические признаки заболевания; 4 – сдвиги жизнедеятельности организма неизвестного

назначения; 5 – накопление загрязнений в органах и тканях.

Проблема состава атмосферного воздуха и его загрязнения от выбросов автотранспорта становится все более актуальной. Это можно проследить уже

на примере Москвы. В 1982 г. вклад автотранспортных средств в суммарное загрязнение атмосферы составлял 69 %, в 1990 г. – 74,6 %, в 1993 г. – 79,6 % и т.д.

Среди факторов прямого действия (все, кроме загрязнения окружающей среды) загрязнение воздуха занимает, безусловно, первое

место, поскольку воздух – продукт непрерывного потребления организма.

Дыхательная система человека имеет ряд механизмов, помогающих защитить организм от воздействия загрязнителей воздуха. Волоски в носу отфильтровывают крупные частицы. Липкая слизистая оболочка в верхней

части дыхательного тракта захватывает мелкие частицы и растворяет некоторые газовые загрязнители. Механизм непроизвольного чихания и кашля удаляет загрязненные воздух и слизь при раздражении дыхательной

Тонкие частицы представляют наибольшую опасность для здоровья человека, так как способны пройти через естественную защитную оболочку в

легкие. Вдыхание озона вызывает кашель, одышку, повреждает легочные ткани и ослабляет иммунную систему.

Влияние загрязнения воздуха на здоровье населения состоит в

следующем.

Взвешенные частицы. Частицы пыли размером от 0,01 до 100 мкм классифицируются следующим образом: более 100 мкм – осаждающиеся,

менее 5 мкм – практически неосаждающиеся.

Частицы первого типа безвредны, поскольку быстро осаждаются либо на поверхности земли, любо в верхних дыхательных путях. Частицы второго типа попадают глубоко в легкие. Установлено присутствие соединений

углерода, углеводорода, парафина, ароматических веществ, мышьяка, ртути и др. в легких вследствие проникновения пыли, a также связь с частотой заболевания раком, хроническим заболеванием дыхательных путей, астмой,

бронхитом, эмфиземой легких. Резкое увеличение частоты хронических бронхитов начинается с концентрации 150 – 200 мг/м3. При попадании в дыхательные пути сажи, возникают хронические заболевания (размеры твердых частиц 0.5…2 мкм), ухудшается видимость, а также сажа абсорбирует на своей поверхности сильнейшие канцерогенные вещества (бенз(а)пирен), что опасно для человеческого организма. Норма сажи в ОГ составляет 0.8 г/м3.

Сернистый ангидрид. Оказывает пагубное влияние на слизистую оболочку верхних дыхательных путей, вызывает бронхиальную закупорку. Начиная с 500 мг/м3 у больных бронхитом наблюдаются осложнения, 200 мг/м3 вызывает увеличение приступов у астматиков.

Оксиды азота. Диоксид азота и фитохимические производные являются побочными продуктами нефтехимических производств и рабочих процессов дизельных двигателей. Оказывают влияние на легкие и на органы зрения. Начиная с 150 мг/м3, при длительных воздействиях происходит нарушение дыхательных функций Оксиды азота раздражают слизистую оболочку глаз и носа, разрушают легкие. В дыхательных путях оксиды азота реагируют с

влагой, которая находится в этом месте. Оксиды азота способствуют разрушению озонового слоя.

Считается, что токсичность NOx больше в 10 раз, чем СО. N2O

действует как наркотик. Норма NOx в воздухе – 0,1 мг/м3.

Озон. Повышение концентрации оксидов азота и углеводородов под

действием солнечной радиации порождает фотохимический смог (озон, ПАН и др.) Фоновая концентрация озона в природе 20…40 мг/м3. При 200 мг/м3 наблюдается заметное негативное воздействие на организм человека.

Моноксид углерода. При сжигании топлива в условиях недостатка

воздуха, CO генерируется в процессе работы автомобильных двигателей. Соединяясь с гемоглобином (Нb), из вдыхаемого воздуха попадает в кровь, препятствуя насыщению крови кислородом, а следовательно, и тканей, мышц, мозга. При концентрации 20…40 мг/м3 в течение 1 часа содержание НbСО в крови повышается на 2…3 %, что вызывает ослабление зрения, ориентации в пространстве, реакций. СО вызывает нарушение нервной системы, головную боль, похудение, рвоту.

Диспансерные исследования Института экологии человека и гигиены окружающей среды им. А. Н. Сысина РАМН показали, что длительное вдыхание воздуха, содержащего моноксид углерода в концентрациях 3…6

ПДК и диоксид азота 2…3 ПДК, вызывает в детском организме ряд ответных реакций. Установлены удлинение времени латентного периода зрительно –

моторной реакции, хронический тонзиллит, хронический ринит, гипертрофия миндалин, снижение жизненной емкости легких.

Основными представителями альдегидов, поступающих в атмосферный воздух с выбросами автомобилей, являются формальдегид и

акролеин. Действие формальдегида характеризуется раздражающим эффектом по отношению к нервной системе. Он поражает внутренние органы и анактивирует ферменты, нарушает обменные процессы в клетке путем

подавления цитоплазматического и ядерного синтеза. Именно RxCHO

определяют запах ОГ.

Биологическое действие фотооксидантов (смесь озона, диоксида азота и формальдегида) на клеточном уровне подобно действию радиации,

вызывает цепную реакцию клеточных повреждений.

Углеводороды (СxНy) имеют неприятные запахи. СxНy раздражают глаза, нос и очень вредны для флоры и фауны. СxНy от паров бензина также токсичные, допускается 1,5 мг/м3 в день.

Оксиды свинца накапливаются в организме человека, попадая в него через животную и растительную пищу. Свинец и его соединения относятся к классу высокотоксичных веществ, способных причинить ощутимый вред здоровью человека. Свинец влияет на нервную систему, что приводит к снижению интеллекта, а также вызывает изменения физической активности, координации, слуха, воздействует на сердечно-сосудистую систему, приводя к заболеваниям сердца. Свинцовое отравление (сатурнизм) занимает первое место среди профессиональных интоксикаций.

от расстояния растения до дороги. Норма Рb в Европе – 10 мг Рb в 1 кг травы.

Современные исследования в области влияния состояния атмосферного воздуха на здоровье населения можно характеризовать табл.3.2.

Влияние кратности превышения ПДК на здоровье людей

Таблица 3.2

Кратность

превышения

Ответ состояния здоровья населения

Нет изменений в состоянии здоровья

Изменение состояния здоровья по некоторым

Выраженные функциональные сдвиги

Рост специфической и неспецифической заболеваемости

Острые отравления

Летальные отравления

Значительная масса вредных выбросов, рассеянных в атмосфере,

является результатом работы автомобиле.

Вредные выбросы – это вещества, поступившие в атмосферу из агрегатов и систем автомобиля. В атмосферу поступают вещества из систем двигателя: картерные выбросы из системы смазки и вентиляции картера, топливные испарения из системы питания топливом, отработавшие газы – смесь газов с примесью взвешенных частиц, удаляемых из цилиндров или камер сгорания через систему выпуска, а также топливный бак и агрегаты трансмиссии.

Они характеризуются токсичностью вредных выбросов (ВВ) и дымностью отработавших газов(ОГ).

Токсичность выбросов двигателя – способность выбросов оказывать

вредное воздействие на людей и животный мир. Вредное воздействие оказывают оксид углерода СО, углеводороды СН и оксиды азота NOх.

Дымность отработавших газов двигателя - показатель,

характеризующий степень поглощения светового потока, просвечивающего отработавшие газы. Нормируемым параметром дымности является оптическая плотность отработавших газов количество поглощенного света частицами сажи и другими светопоглощающими дисперсными частицами отработавших газов автотракторных дизелей, определяемое по шкале измерительного прибора.

В США, например, доля выбросов токсичных соединений в атмосферу автомобилей составляет 60 %, а в странах Западной Европы – до 40 %.

Отработавшие газы, смешиваясь с туманом, образуют плотную завесу смога, против которого не найдено еще средств. В дни смога резко

увеличивается число аллергических заболеваний, инсультов, нервных припадков.

Под действием солнечных лучей углеводороды и оксиды азота, содержащиеся в атмосфере, вступают в фотохимическую реакцию, образуя соединения, вызывающие резь в глазах. Особенно велик уровень загазованности в местах скопления автомобилей (тракторов).

Следует отметить, что в настоящее время по дорогам мира движутся более 300 млн автомобилей, которые потребляют около 3,5 млрд кг топлива

на каждые 100 км пробега, а при сгорании 1 кг топлива в двигателе выделяется 446 г СО и около 16 г оксидов азота.

Доля загрязнения воздуха отработавшими газами составляет 65 %,

газами, выделяемыми из картера двигателя, 20 %, из карбюратора 9 % и из топливного бака 6 %.

Проблема защиты окружающей среды от отрицательного воздействия

автомобилей связана прежде всего со снижением выбросов токсичных веществ ДВС.

Предельные концентрации вредных и токсичных веществ в воздухе

устанавливают в качестве гигиенических норм. Однако большой вред здоровью человека наносит длительное воздействие вредных веществ малых концентраций и нескольких токсичных компонентов.

Особенно опасны для здоровья человека оксид углерода и оксиды азота. Воздействие оксидов азота нельзя ослабить никакими нейтрализующими веществами. Не полностью сгоревшие углеводороды – это

несколько сотен химических соединений. Эта смесь является причиной многих хронических заболеваний. Наиболее опасным соединением считается бенз(а)пирен, обладающий также канцерогенными свойствами. Некоторые ароматические углеводороды являются сильными отравляющими

веществами, они воздействуют на системы кровообращения, центральную нервную и мышечную. Диоксид серы также оказывает вредное воздействие на кроветворные органы (костный мозг и селезенку) человека, его слизистую

оболочку, вызывает бессонницу. Сильными токсичными веществами являются свинец и его соединения. Они содержатся в этилированном бензине. Попадая в организм, они вызывают нарушения обмена веществ.

Загрязнение окружающей среды токсичными веществами отработавших газов приводит к существенным отрицательным последствиям. Грунтовые и поверхностные воды в большой степени подвержены опасности

загрязнения топливом, маслами, смазочными материалами и другими специальными жидкостями. Даже минимальное количество этих веществ может сильно изменить качество воды. Пленка из углеводородов на поверхности воды затрудняет процессы окисления, что отрицательно влияет

на живые организмы. Особенно опасным для лесов и лесопарков является диоксид серы, разрушающий хлорофилл. Установлено, что растения чувствительны даже к очень малым концентрациям SO2 в воздухе.

Точно определить количество выбросов вредных веществ в атмосферу двигателями практически невозможно. Величина этих выбросов зависит от многих факторов: типа двигателя, его конструктивных параметров, процесса

подготовки и сгорания смеси топлива и воздуха, режима работы,

технического состояния и др.

В настоящее время строго регламентируются предельные значения выбросов вредных веществ (ВВ) и дымности отработавших газов (ОГ).

Для их определения проводят испытания. Процедура испытаний

включает 3 различных цикла: ESC и ETC, предназначенные для определения выбросов ВВ, и ELR – для определения дымности отработавших газов (ОГ).

Цикл ESC по принципу построения близок к «старому» 13-и ступенчатому европейскому циклу. При испытаниях по циклу ESC

проверяется содержание NОХ в трех дополнительных «случайных» точках, лежащих в области режимов работы двигателя, заданной по нагрузке и частоте вращения коленчатого вала. Увеличение содержания NОХ в этих

«случайных» точках по сравнению с результатами, полученными при испытаниях в соответствующих близлежащих точках цикла, не должно превосходить 10 %. Это требование введено с целью исключения «обхода»

цикла, когда заданные экологические показатели достигаются только на регламентированных режимах цикла, а на всех остальных режимах остаются вне контроля или устанавливаются заведомо завышенными для обеспечения

наилучших мощностных, экономических и эксплуатационных показателей, что на двигателях с электронными системами управления не представляет никакого труда.

ETC – это цикл с непрерывным (посекундным) изменением нагрузки и частоты вращения двигателя. Цикл состоит из трех фаз, имитирующих движение в условиях города, пригорода и автострады.

ELR – цикл для определения дымности ОГ – представляет собой цикл

динамического нагружения. Испытания проводятся на тех же скоростных режимах, что в цикле ESC, а также на одном дополнительном «случайном» режиме, выбираемом Технической службой, проводящей испытания.

Испытания проводятся следующим образом. Первоначально двигатель paботает на заданном скоростном режиме с нагрузкой 10 %. Затем регулятор подачи топлива быстро выводится в положение, соответствующее

максимальной подаче топлива, закон нагружения при этом обеспечивает поддержание заданной постоянной частоты вращения коленвала двигателя. Дымность двигателя определяется как среднее значение дымности на

заданных скоростных режимах.

Предполагается следующий порядок применения испытательных циклов:

Для испытания «обычных» дизелей, включая двигатели с

электронным управлением топливоподачей, системой рециркуляции ОГ,

окислительными нейтрализаторами, применяются циклы ESC и ELR;

Для испытаний двигателей, оснащенных такими средствами уменьшения выбросов, как, например, восстановительные нейтрализаторы

NОХ и уловители частиц, применяются все указанные циклы - ESC, ELR, ETC;

Газовые двигатели испытываются только по циклу ETC.

Европейские требования по предельным значениям содержания ВВ в ОГ к автомобилям категорий M1 и N1 с бензиновыми, газовыми и дизельными двигателями приведены в табл.3.3.

Таблица 3.3

масса автомо- биля, кг

углерода (СО), г/км

Углеводо

азота (NOX) г/км

Углеводо

роды + ок- сиды азота г/км

тицы г/км

(1) Кроме автомобилей, максимальная масса которых превышает 2500 кг.

(2) Включая автомобили категории М, указанные в примечании 1

Для автотранспортных средств (АТС) категорий М1 полной массой более 3500 кг, М2, М3, N1, N2, N3 c дизельными и газовыми двигателями нормативные требования к вредным выбросам представлены в табл. 3.4 и 3.5.

Таблица 3.4

Предельные величины содержания ВВ и ОГ при выполнении ESC и

углерода

Углеводород

Азота (NOX) г/кВт.ч

Дымность м -1

Евро-3 2000г.

Евро-4 2005г.

Евро-5 2008г.

(1) – Для двигателей с рабочим объёмом менее 0,75дм3 на цилиндр и номинальной частотой вращения более 3000 мин-1.

(2) – «Форсированные» добровольные требования.

Таблица 3.5

Предельные величины содержания ВВ и ОГ при выполнении

ЕТС цикла

углерода (СО), г/кВт·ч

Неметановые

углеводороды (NMCH) г/кВт·ч

Метан (СН4)(1) г/кВт·ч

азота (NOX) г/кВт·ч

Частицы(2)

(1) – Только для двигателей, работающих на природном газе.

(2) – Не применяется по отношению к двигателям, работающим на газе.

(3) – Для двигателей с рабочим объёмом менее 0,75дм3 на цилиндр и номинальной частотой вращения более 3000 мин-1.

В России к выбросам вредных веществ (ВВ) АТС категорий М1 полной массой более 3500 кг, М2, М3, N1, N2, N3 c дизельными и газовыми двигателями действуют требования Евро-2. К этих же АТС с бензиновыми двигателями применяются требования, представленные в табл.3.6.

Предельные величины содержания ВВ

Таблица 3.6

В отношении АТС категорий M1 и N1 применяются требования, соответствующие уровню Евро-2 для пассажирских автомобилей (М1) и Евро-1 для грузовых (N1). Эти требования представлены в табл.3.7.

Таблица 3.7.

Предельно-допустимые величины содержания ВВ

Полная масса

автомобиля, (m), кг

углерода

Общая масса

углеводородов и оксидов

азота (СН+NOX) г/км

13051760

Полный переход (100 % выпускаемых АТС) России на уровень

Европейских требований состоялся: Евро-2 - 2004 год; Евро-3, 4 -2008 год.

Уровень загазованности может быть снижен рядом конструктивных и эксплуатационных мероприятий, направленных не только на снижение

объема выбросов, но и их токсичности. Среди мероприятий конструктивного характера можно отметить следующие:

применение устройств нейтрализации и очистки выбросов от токсичных компонентов;

применение устройств, оптимизирующих дозирование,

смесеобразование топлива, а также рабочий процесс (электронные и электромеханические системы впрыска топлива, транзисторные системы

зажигания, форкамерно-факельные дожигатели, рециркуляция выхлопа,

термостатирование воздуха и пр.);

применение нетрадиционных видов топлива (газовое топливо, водород,

синтетический бензин, спирт);

создание новых силовых установок.

Значительное уменьшение выброса СО может быть достигнуто равномерным распределением смеси путем непосредственного впрыска топлива или улучшения условий испарения топлива в карбюраторе и во впускном трубопроводе; обеспечение состава и качества образуемой смеси нагрузке и частоте вращения коленчатого вала двигателя.

Для снижения выброса углеводородов СnНm, двигатель внутреннего сгорания переводят на работу на бедных смесях, стремясь достичь большей однородности смеси и равномерности ее распределения по цилиндрам. Кроме того, стараются уменьшить долю остаточных газов в смеси при работе двигателя на частичных нагрузках правильным выбором формы и размеров камеры сгорания. Значительно сократить выбросы СО и СnНm с отработавшими газами можно использованием для питания двигателя водорода или газообразного топлива, а также послойным смесеобразованием.

Уменьшение выброса NOх у карбюраторных двигателей достигается снижением максимальной температуры цикла, обогащением смеси или сокращением продолжительности реакций, при которых происходит образование соединений азота. На практике наряду с обогащением смеси и уменьшением угла опережения зажигания понижают степень сжатия, увеличивают частоту вращения коленчатого вала двигателя, впрыскивают воду во впускной трубопровод или осуществляют частичную рециркуляцию отработавших газов.

Все применяемые в настоящее время способы уменьшения токсичности выбросов по всем основным компонентам (СО, СnНm, NOх) основаны на комбинации рассмотренных выше способов. Чаще всего это достигается следующим образом:

уменьшением выброса СО и СnНm, обеднением смеси и изменением угла опережения зажигания. Эти параметры подбирают для каждого режима работы двигателя. Устойчивая работа на обедненных смесях достигается улучшением качества смесеобразования и увеличением энергии искры на электродах свечи, для чего применяют непосредственное впрыскивание топлива и тиристорное зажигание. Для уменьшения выброса NOх используют частичную рециркуляцию отработавших газов. При использовании системы непосредственного впрыскивания топлива с электронным управлением, отрегулированной на экономичный состав смеси (в зависимости от разрежения во впускном трубопроводе, частоты вращения вала и теплового режима двигателя), удается снизить концентрацию токсичных веществ и уменьшить расход топлива на 8...10 %;

переводом двигателя на газообразное топливо с одновременной его регулировкой для работы на обедненных смесях. При этом достигается значительное уменьшение выброса продуктов неполного сгорания, т. е. СО и СnНm. Одновременно для уменьшения выброса NOx применяют, например, частичную рециркуляцию отработавших газов.

В карбюраторных двигателях во всех случаях используют специальные устройства для подачи дополнительного воздуха во впускной трубопровод на режимах разгона и торможения колесной машины. Широко применяют устройства, предотвращающие выброс в атмосферу паров углеводородов из картера двигателя и топливной системы.

Рециркуляцию газов для уменьшения выброса оксидов азота осуществляют все шире как в двигателях с искровым зажиганием, так и в дизелях. При этом понижают температуру процесса сгорания в результате уменьшения количества топлива, поступающего в цилиндры, и большей теплоемкости продуктов сгорания по сравнению с теплоемкостью воздуха. При рециркуляции 5 % отработавших газов концентрация NOх уменьшается примерно на 47 %, а при рециркуляции 15 % газов – на 84 %. Одновременно наблюдаются небольшое уменьшение выброса СnНm и некоторое увеличение выброса СО, а в дизелях – увеличение дымности. При рециркуляции газов более 10 % происходит заметное падение мощности двигателя,

увеличивается расход топлива и ухудшаются динамические характеристики автомобиля (трактора).

Такие компоненты отработавших газов, как оксид углерода и углеводороды, могут быть нейтрализованы в выпускной системе двигателя. Для этого в поток горячих отработавших газов непосредственно за

выпускным клапаном подают воздух под давлением 0,05...0,06 МПа. Количество подаваемого воздуха зависит от коэффициента избытка воздуха. По мере обеднения смеси подачу воздуха прекращают.

Чем выше температура смеси отработавших газов с воздухом, тем

эффективнее процесс окисления в выпускной системе. Увеличивают температуру уменьшением угла опережения зажигания, использованием тепловой изоляции выпускного трубопровода, снижением потерь теплоты в камере сгорания, установкой в системе выпуска специальных реакционных камер. Однако при этом несколько снижается мощность двигателя (увеличивается сопротивление на выпуске) и повышается удельный расход топлива.

Каталитические нейтрализаторы служат для сжигания продуктов неполного сгорания (СО и СnHm) и разложения оксидов азота NOх. Их действие основано на беспламенном поверхностном окислении токсичных веществ в присутствии катализатора, ускоряющего химическую реакцию. Процесс окисления происходит во время прохождения отработавших газов через слой носителя с катализатором (например, платины). Скорость сгорания зависит от температуры носителя (достигает 800 °С).

Каталитические нейтрализаторы используются для очистки отработавших газов двигателей с искровым зажиганием и дизелей. Все нейтрализаторы, монтируемые в выпускной системе, увеличивают сопротивление прохождению газов и приводят к снижению мощности двигателя на 10...20 %. Основным их недостатком является неэффективная работа в диапазоне низких температур отработавших газов. В связи с этим разработаны устройства, состоящие из плазменного и каталитического нейтрализаторов. В плазменном газы разогреваются, а в каталитическом происходит основной процесс окисления. Такие устройства эффективно работают на всех режимах независимо от нагрузки и частоты вращения вала двигателя. Их недостатком являются относительная сложность конструкции и повышенный расход топлива.

Дальнейшее усовершенствование ДВС для уменьшения выброса токсичных компонентов без увеличения расхода топлива практически невозможно. В этом отношении заслуживают внимания силовые агрегаты,

например с газотурбинными двигателями и двигателями Стирлинга.

Значительное уменьшение выброса токсичных компонентов с уменьшением расхода топлива может быть достигнуто созданием

автомобилей с гибридными силовыми установками.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ПО
ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Утверждена

приказом Госкомэкологии России

МЕТОДИКА
ОПРЕДЕЛЕНИЯ ВЫБРОСОВ АВТОТРАНСПОРТА
ДЛЯ
ПРОВЕДЕНИЯ СВОДНЫХ РАСЧЕТОВ
ЗАГРЯЗНЕНИЯ
АТМОСФЕРЫ ГОРОДОВ

Москва, 1999

Настоящий документ устанавливает порядок расчета выбросов автотранспорта для их использования при проведении сводных расчетов загрязнения атмосферы городов; может быть применен ко всем категориям автотранспортных средств при эксплуатации в городских условиях. Полученные по настоящему документу результаты используются в качестве исходных данных для проведения сводных расчетов загрязнения атмосферы городов выбросами промышленности и автотранспорта. При разработке данного документа учтены результаты практической оценки выбросов при проведении расчетов загрязнения атмосферы в Государственных комитетах по охране окружающей среды Пермской и Псковской областях, Санкт - Петербурга и Ленинградской области и комитете по охране окружающей среды г. Воронежа, а также их замечания и предложения по совершенствованию методологии оценки выбросов автотранспорта для применения при сводных расчетах загрязнения атмосферы городов.

I . ОБЩИЕ ПОЛОЖЕНИЯ

1.1 . Настоящая методика предназначена для оценки величин выбросов загрязняющих веществ в атмосферу автотранспортными потоками на городских магистралях. 1.2 . Полученные величины выбросов автотранспортных потоков на городских автомагистралях применяются при проведении сводных расчетов загрязнения атмосферного воздуха города (региона) выбросами промышленности и транспорта. 1.3 . В качестве исходных данных для расчета выбросов автотранспорта в атмосферу используются результаты натурных обследований структуры и интенсивности автотранспортных потоков с подразделением по основным категориям автотранспортных средств. 1.4 . Приведенные в данном документе усредненные удельные значения показателей выбросов отражают основные закономерности их изменения при реальном характере автотранспортного движения в городских условиях, определяемых целесообразным выбором передаточного отношения от двигателя к трансмиссии. При этом учитывается, что в городе автомобиль совершает непрерывно разгоны и торможения, перемещаясь с некоторой средней скоростью на конкретном участке автомагистрали, определяемой дорожными условиями. 1.5 . Расчеты выбросов выполняются для следующих вредных веществ, поступающих в атмосферу с отработавшими газами автомобилей: - оксид углерода (СО); - оксиды азота N О x (в пересчете на диоксид азота); - углеводороды (СН) * ; - сажа; - диоксид серы (SO 2); - соединения свинца ** ; - формальдегид; - бенз (а) пирен. * - расчет выбросов соединений свинца для автомобилей, движущихся по городским автомагистралям, производится в том случае, если в данном городе используется этилированный бензин. Рассчитанные значения выбросов соединений свинца целесообразно уточнить с учетом доли этилированного бензина в общем потреблении бензинов всех марок в данном городе. ** - для автомобилей с бензиновыми двигателями при проведении расчетов загрязнения атмосферы используется ПДКм. р. по бензину (код 2704); для автомобилей с дизельным двигателем - по керосину (код 2732) [ 8]. 1.6 . Используемые при расчете выбросов параметры определяются на основе натурных обследований, проведение которых осуществляется по достаточно простой схеме, не требующей инструментального оснащения и продолжительного обучения. Это позволяет выполнять такие работы практически в любом городе с необходимой периодичностью, что весьма важно для регулярной корректировки информации о выбросах автотранспорта в целях поддержания работы компьютерного банка данных о выбросах промышленности и автотранспорта города в оперативном режиме.

II . РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ АВТОТРАНСПОРТОМ

Выброс i - го вредного вещества автотранспортным потоком (MLi) определяется для конкретной автомагистрали, на всей протяженности которой, структура и интенсивность автотранспортных потоков изменяется не более, чем на 20 - 25 %. При изменении автотранспортных характеристик на большую величину, автомагистраль разбивается на участки, которые в дальнейшем рассматриваются как отдельные источники. Такая магистраль (или ее участок) может иметь несколько нерегулируемых перекрестков или (и) регулируемых при интенсивности движения менее 400 - 500 а / час. Для автомагистрали (или ее участка) с повышенной интенсивностью движения (т. е. более 500 а / час) целесообразно дополнительно учитывать выброс автотранспорта (Мп) в районе перекрестка. В районе перекрестка выбрасывается наибольшее количество вредных веществ автомобилем за счет торможения и остановки автомобиля перед запрещающим сигналом светофора и последующим его движением в режиме «разгона» по разрешающему сигналу светофора. Это обуславливает необходимость выделить на выбранной автомагистрали участки перед светофором, на которых образуется очередь автомобилей, работающих на холостом ходу в течение времени действия запрещающего сигнала светофора. Таким образом, для автомагистрали (или ее участка) при наличии регулируемого перекрестка суммарный выброс М будет равен:

Где: , , , - выброс в атмосферу автомобилями, находящимися в зоне перекрестка при запрещающем сигнале светофора; , , , - выброс в атмосферу автомобилями, движущимися по данной автомагистрали в рассматриваемый период времени; n и m - число остановок автотранспортного потока перед перекрестком соответственно на одной и другой улицах его образующих за 20- минутный период времени; индексы 1 и 2 соответствуют каждому из 2- х направлений движения на автомагистрали с большей интенсивностью движения, а 3 и 4 - соответственно для автомагистрали с меньшей интенсивностью движения.

II.1 . Расчет выбросов движущегося автотранспорта.

Выброс i - того загрязняющего вещества (г / с) движущимся автотранспортным потоком на автомагистрали (или ее участке) с фиксированной протяженностью L (км) определяется по формуле:

(II .2)

(г / км) - пробеговый выброс i -г o вредного вещества автомобилями k - й группы для городских условий эксплуатации, определяемый по табл. II .1 ; k - количество групп автомобилей; G k (1/ час) - фактическая наибольшая интенсивность движения, т. е. количество автомобилей каждой из К групп, проходящих через фиксированное сечение выбранного участка автомагистрали в единицу времени в обоих направлениях по всем полосам движения; - поправочный коэффициент, учитывающий среднюю скорость движения транспортного потока ( (км / час) на выбранной автомагистрали (или ее участке), определяемый по табл. II .2); - коэффициент пересчета «час» в «сек» ; L (км) - протяженность автомагистрали (или ее участка) из которого исключена протяженность очереди автомобилей перед запрещающим сигналом светофора и длина соответствующей зоны перекрестка (для перекрестков, на которых проводились дополнительные обследования).

Таблица II .1 .

Значения пробеговых выбросов (г / км) для различных групп автомобилей

№ группы

NO х (в пересчете на NO 2)

Формальдегид

Соединения свинца

Бенз (а) пирен

Легковые
Легковые дизельные
Автобусы карбюраторные
Грузовые дизельные
Автобусы дизельные

Таблица II .2 .

Значения коэффициентов , учитывающих изменения количества выбрасываемых вредных веществ в зависимости от скорости движения

Скорость движения (V , км / час)

Примечание: для диоксида азота значение принимается постоянным и равным 1 до скорости 80 км/час.

II.2 Расчет выбросов автотранспорта в районе регулируемого перекрестка

При расчетной оценке уровней загрязнения воздуха в зонах перекрестков следует исходить из наибольших значений содержания вредных веществ в отработавших газах, характерных для режимов движения автомобилей в районе пересечения автомагистралей (торможение, холостой ход, разгон). Выброс i - го загрязняющего вещества (З В) в зоне перекрестка при запрещающем сигнале светофора М 4 п 0 определяется по формуле:

г/мин (II.3)

Где Р (мин.) - продолжительность действия запрещающего сигнала светофора (включая желтый цвет); N Ц - количество циклов действия запрещающего сигнала светофора за 20- минутный период времени; N гр - количество групп автомобилей; (г / мин) - удельный выброс i -г o З В автомобилями, k - ой группы, находящихся в «очереди» у запрещающего сигнала светофора; G k , n - количество автомобилей k группы, находящихся в «очереди» в зоне перекрестка в конце n - го цикла запрещающего сигнала светофора. Значения определяются по табл. II .3 , в которой приведены усредненные значения удельных выбросов (г / мин), учитывающие режимы движения автомобилей в районе пересечения перекрестка (торможение, холостой ход, разгон), а значения Р, N Ц, G k - по результатам натурных обследований.

Таблица II .3 .

Удельные значения выбросов для автомобилей , находящихся в зоне перекрестка

Наименование группы автомобилей

№ группы

Выброс, г / мин

NO x (в пересчете на NO 2)

Формальдегид

Соединения свинца

Бенз (а) пирен

Легковые
Легковые дизельные
Грузовые карбюраторные с грузоподъемностью до 3 т (в том числе работающие на сжиженном нефтяном газе) и микроавтобусы
Грузовые карбюраторные с грузоподъемностью более 3 т (в том числе работающие на сжиженном нефтяном газе)
Автобусы карбюраторные
Грузовые дизельные
Автобусы дизельные
Грузовые газобалонные, работающие на сжатом природном газе
* - значение выброса за вычетом метана

III . ОРГАНИЗАЦИЯ И ПРОВЕДЕНИЕ НАТУРНЫХ ОБСЛЕДОВАНИЙ СТРУКТУРЫ И ИНТЕНСИВНОСТИ АВТОТРАНСПОРТНЫХ ПОТОКОВ НА ОСНОВНЫХ АВТОМАГИСТРАЛЯХ

Для определения выбросов автотранспорта на городских автомагистралях и последующего их использования в качестве исходных данных при проведении расчетов загрязнения атмосферы проводится изучение особенностей распределения автотранспортных потоков (их состава и интенсивности) по городу и их изменений во времени (в течение суток, недели и года). Территориальные различия состава и интенсивности транспортных потоков зависят от площади и поперечных размеров города, количества населения, схемы планировки улично - дорожной сети, особенностей расположения промышленных предприятий, автохозяйств, бензозаправочных станций и станций техобслуживания. Временные различия в значительной степени связаны с режимом работы промышленных предприятий и учреждений города и с климатическими особенностями района, в котором расположен город. III .1 . На основе изучения схемы улично - дорожной сети города, а также информации о транспортной нагрузке составляется перечень основных автомагистралей (и их участков) с повышенной интенсивностью движения и перекрестков с высокой транспортной нагрузкой. В качестве таких магистралей (участков) рассматриваются: - для городов с населением до 500 тысяч человек - магистрали (или их участки) с интенсивностью движения в среднем более 200 - 300 автомобилей в час; - для городов с населением более 500 тыс. человек - магистрали (или их участки) с интенсивностью движения в среднем более 400 - 500 автомобилей в час. Выбранные автомагистрали (или их участки) и перекрестки наносятся на карту - схему города (с учетом масштаба карты). На этой карте фиксируются и перекрестки, на которых предполагается проведение дополнительных обследований. III .2 . Для определения характеристик автотранспортных потоков на выбранных участках улично - дорожной сети проводится учет проходящих автотранспортных средств в обоих направлениях с подразделением по следующим группам: I . Л - легковые, из них отдельно легковые и легковые дизельные автомобили; II . ГК < 3 - грузовые карбюраторные грузоподъемностью менее 3 тонн и микроавтобусы (ГАЗ -51-53, УАЗы, «Газель» , РАФ и др.); III . ГК > 3 - грузовые карбюраторные грузоподъемностью более 3 тонн (ЗИЛы, Урал и др.); IV . АК - автобусы карбюраторные (ПАЗ, ЛАЗ, ЛИАЗ); V . ГД - грузовые дизельные (КРАЗ, КАМАЗ); VI . АД - автобусы дизельные (городские и интуристовские «Икарусы»); VII . ГГБ - грузовые газобалонные, работающие на сжатом природном газе. III .3 . Подсчет проходящих по данному участку автомагистрали транспортных средств проводится в течение 20 минут каждого часа. При высокой интенсивности движения (более 2 - 3 тыс. автомашин в час) подсчет проходящих автотранспортных средств проводится синхронно раздельно по каждому направлению движения (а при недостаточности числа наблюдателей - первые 20 минут - в одном направлении; следующие 20 минут - в противоположном направлении). III .4 . Для выявления максимальной транспортной нагрузки наблюдения выполняются в часы «пик» . Для большинства городских автомагистралей отмечается два максимума: утренний и вечерний (соответственно с 7 - 8 часов до 10 до 11 часов и с 16 - 17 часов до 19 - 20 часов), для многих транзитных автомагистралей наибольшая транспортная нагрузка характерна для дневного времени суток. С целью получения исходных данных о выбросах для проведения сводных расчетов загрязнения атмосферы города наблюдения организуются в часы «пик» летнего сезона года. Натурные обследования состава и интенсивности движущегося автотранспортного потока проводятся не менее 4 - 6 раз в часы «пик» на каждой автомагистрали. III .5 . Результаты натурных обследований структуры и интенсивности движущегося автотранспортного потока заносятся в полевой журнал по форме, приведенной в таблице III .1 .

Таблица III .1 .

ПОЛЕВОЙ ЖУРНАЛ
обследования характеристик движущегося автотранспортного потока

Время подсчета, за период 20 минут

Число автомобилей по группам

Скорость движения потока, км / час

Легковые

Легковые дизельные

ГК < 3, МА

Легко вые

Грузовые

Автобусы

III .6 . Для оценки транспортной нагрузки в районе регулируемых перекрестков проводятся дополнительные обследования. III .6.1 . Последовательно (а при возможности одновременно) на каждом направлении движения в период действия запрещающего сигнала светофора (включая и желтый цвет) выполняется подсчет автотранспортных средств (по группам, согласно п. III .2), образующих «очередь» . Одновременно фиксируется длина «очереди» в метрах. Подсчеты проводятся не менее 4 - 6 раз в периоды, указанные в п. III .4 . III .6.2 . Результаты дополнительных обследований заносятся в полевой журнал по форме, приведенной в табл. III .2 .

Таблица III .2

ПОЛЕВОЙ ЖУРНАЛ
обследования
автотранспортных потоков на перекрестках

Время работы запрещающего сигнала светофора, мин.

Число автомобилей по группам

Длина очереди автотранспорта (м)

Легковые

Легковые дизельные

ГК < 3 , МА

III .7 . В ходе проведения натурных обследований дополнительно определяется ряд параметров, необходимых как для расчета выбросов согласно п. II настоящего документа, так и проведения расчетов загрязнения атмосферы. III .7.1 . На каждой автомагистрали (или ее участке) фиксируются следующие параметры: - ширина проезжей части, (в метрах); - количество полос движения в каждом направлении; - протяженность выбранного участка автомагистрали (в км) с указанием названий улиц, ограничивающих данную автомагистраль (или ее участок); - средняя скорость автотранспортного потока с подразделением на три основные категории: легковые, грузовые и автобусы (в км / час) (определяется по показаниям спидометра автомобиля, движущегося в автотранспортном потоке). Определение средней скорости движения основных групп автотранспортного потока выполняется по всей протяженности обследуемой автомагистрали или ее участка, включая зоны нерегулируемых перекрестков и регулируемых перекрестков, выбранных согласно раздела I настоящего документа. III .7.2 . На обследуемом перекрестке фиксируются следующие параметры: - ширина проезжей части (в метрах); - количество полос движения в каждом направлении; - протяженность зоны перекрестка в каждом направлении (в метрах). III .7.3 . К полевым журналам по формам таблиц III .1 и III .2 прилагаются схемы расположения обследуемых автомагистралей и перекрестков с регулируемым движением.

ЛИТЕРАТУРА

1 . Методические рекомендации по инвентаризации и нормированию выбросов автотранспорта в Санкт - Петербурге. С - Пб., 1995. 2 . Ложкин В. Н., Демочка О. И. и др. Экспериментально - расчетная оценка выбросов вредных веществ с отработавшими газами ДВС на эксплуатационных режимах работы. Технический отчет по НИР. С - Пб., НПО ЦНИТА, 1990. 3 . Жегалин О. И., Лупачев П. Д. Снижение токсичности автомобильных двигателей. М., Транспорт, 1985. 4 . Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М., 1998. 5 . Методика определения массы выбросов загрязняющих веществ автотранспортными средствами в атмосферный воздух. М., 1993. 6 . Методика расчета выбросов загрязняющих веществ автотранспортом на городских магистралях. М., 1997. 7 . Сравнительная оценка методик расчета выбросов от автотранспорта и возможностей их использования при проведении комплексных оценок рассеивания загрязняющих веществ. Отчет по теме. Пермский Гос. университет. 1998. 8 . Перечень и коды веществ, загрязняющих атмосферный воздух. С. Петербург, 1998.

План

    Загрязнение атмосферы выбросами транспорта.

    Последствия загрязнения атмосферы.

2.1 Оксид углерода.

2.2 Диоксид серы и серный ангидрид.

2.3 Оксиды азота и некоторые другие вещества.

    Меры по предотвращению загрязнения и охрана атмосферного воздуха.

3.1. Средства защиты атмосферы.

3.2. Эффективность очистки.

3.3. Способы очистки газовых выбросов в атмосферу.

3.4. Охрана атмосферного воздуха.

    Заключение.

1. Загрязнение атмосферы выбросами транспорта.

Большую долю в загрязнении атмосферы составляют выбросы вредных веществ от автомобилей. Сейчас на Земле эксплуатируется около 500 млн. автомобилей, а к 2000 г. ожидается увеличение их числа до 900 млн. В 1997 г. в Москве эксплуатировались 2400 тыс. автомобилей при нормативе 800 тыс. автомобилей на действующие дороги.

В настоящее время на долю автомобильного транспорта приходится больше половины всех вредных выбросов в окружающую среду, которые являются главным источником загрязнения атмосферы, особенно в крупных городах. В среднем при пробеге 15 тыс. км за год каждый автомобиль сжигает 2 т топлива и около 26– 30 т воздуха, в том числе 4,5 т кислорода, что в 50 раз больше потребностей человека. При этом автомобиль выбрасывает в атмосферу (кг/год): угарного газа – 700, диоксида азота – 40, несгоревших углеводородов – 230 и твердых веществ – 2 – 5. Кроме того, выбрасывается много соединений свинца из-за применения в большинстве своем этилированного бензина.

Наблюдения показали, что в домах, расположенных рядом с большой дорогой

(до 10 м), жители болеют раком в 3 – 4 раза чаще, чем в домах, удаленных от дороги на расстояние 50 м. Транспорт отравляет также водоемы, почву и растения.

Токсичными выбросами двигателей внутреннего сгорания (ДВС) являются отработавшие и картерные газы, пары топлива из карбюратора и топливного бака. Основная доля токсичных примесей поступает в атмосферу с отработавшими газами ДВС. С картерными газами и парами топлива в атмосферу поступает приблизительно 45 % углеводородов от их общего выброса.

Количество вредных веществ, поступающих в атмосферу в составе отработавших газов, зависит от общего технического состояния автомобилей и, особенно, от двигателя – источника наибольшего загрязнения. Так, при нарушении регулировки карбюратора выбросы оксида углерода увеличиваются в 4...5 раза. Применение этилированного бензина, имеющего в своем составе соединения свинца, вызывает загрязнение атмосферного воздуха весьма токсичными соединениями свинца. Около 70 % свинца, добавленного к бензину с этиловой жидкостью, попадает в виде соединений в атмосферу с отработавшими газами, из них 30 % оседает на земле сразу за срезом выпускной трубы автомобиля, 40 % остается в атмосфере. Один грузовой автомобиль средней грузоподъемности выделяет 2,5...3 кг свинца в год. Концентрация свинца в воздухе зависит от содержания свинца в бензине.

Исключить поступление высокотоксичных соединений свинца в атмосферу можно заменой этилированного бензина неэтилированным.

Выхлопные газы ГТДУ содержат такие токсичные компоненты, как оксид углерода, оксиды азота, углеводороды, сажу, альдегиды и др. Содержание токсичных составляющих в продуктах сгорания существенно зависит от режима работы двигателя. Высокие концентрации оксида углерода и углеводородов характерны для газотурбинных двигательных установок (ГТДУ) на пониженных режимах (при холостом ходе, рулении, приближении к аэропорту, заходе на посадку), тогда как содержание оксидов азота существенно возрастает при работе на режимах, близких к номинальному (взлете, наборе высоты, полетном режиме).

Суммарный выброс токсичных веществ в атмосферу самолетами с ГТДУ непрерывно растет, что обусловлено повышением расхода топлива до 20...30 т/ч и неуклонным ростом числа эксплуатируемых самолетов. Отмечается влияние

ГТДУ на озоновый слой и накопление углекислого газа в атмосфере.

Наибольшее влияние на условия обитания выбросы ГГДУ оказывают в аэропортах и зонах, примыкающих к испытательным станциям. Сравнительные данные о выбросах вредных веществ в аэропортах подзывают, что поступления от ГТДУ в приземной слой атмосферы составляют, %: оксид углерода – 55, оксиды азота – 77, углеводороды – 93 и аэрозоль – 97. Остальные выбросы выделяют наземные транспортные средства с ДВС.

Загрязнение воздушной среды транспортом с ракетными двигательными установками происходит главным образом при их работе перед стартом, при взлете, при наземных испытаниях в процессе их производства или после ремонта, при хранении и транспортировании топлива. Состав продуктов сгорания при работе таких двигателей определяется составом компонентов топлива, температурой сгорания, процессами диссоциации и рекомбинации молекул. Количество продуктов сгорания зависит от мощности (тяги) двигательных установок. При сгорании твердого топлива из камеры сгорания выбрасываются пары воды, диоксид углерода, хлор, пары соляной кислоты, оксид углерода, оксид азота, а также твердые частицы Аl2O3 со средним размером 0,1 мкм (иногда до 10 мкм).

При старте ракетные двигатели неблагоприятно воздействуют не только на приземной слой атмосферы, но и на космическое пространство, разрушая озоновый слой Земли. Масштабы разрушения озонового слоя определяются числом запусков ракетных систем и интенсивностью полетов сверхзвуковых самолетов.

В связи с развитием авиации и ракетной техники, а также интенсивным использованием авиационных и ракетных двигателей в других отраслях народного хозяйства существенно возрос общий выброс вредных примесей в атмосферу. Однако на долю этих двигателей приходится пока не более 5 % токсичных веществ, поступающих в атмосферу от транспортных средств всех типов.

2. Последствия загрязнения атмосферы.

Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека. Эти вещества попадают в организм человека преимущественно через систему дыхания. Органы дыхания страдают от загрязнения непосредственно, поскольку около 50% частиц примеси радиусом 0,01-0.1 мкм, проникающих в легкие, осаждаются в них.

Проникающие в организм частицы вызывают токсический эффект, поскольку они: а токсичны (ядовиты) по своей химической или физической природе; б) служат помехой для одного или нескольких механизмов, с помощью которых нормально очищается респираторный (дыхательный) тракт; в) служат носителем поглощенного организмом ядовитого вещества.

В некоторых случаях воздействие одни из загрязняющих веществ в комбинации с другими приводят к более серьезным расстройствам здоровья, чем воздействие каждого из них в отдельности. Большую роль играет продолжительность воздействия.

Статистический анализ позволил достаточно надежно установить зависимость между уровнем загрязнения воздуха и такими заболеваниями, как поражение верхних дыхательных путей, сердечная недостаточность, бронхиты, астма, пневмония, эмфизема легких, а также болезни глаз. Резкое повышение концентрации примесей, сохраняющееся в течение нескольких дней, увеличивает смертность людей пожилого возраста от респираторных и сердечно-сосудистых заболеваний. В декабре 1930 г. в долине реки Маас (Бельгия) отмечалось сильное загрязнение воздуха в течение 3 дней; в результате сотни людей заболели, а 60 человек скончались - это более чем в 10 раз выше средней смертности. В январе 1931 г. в районе Манчестера (Великобритания) в течение 9 дней наблюдалось сильное задымление воздуха, которое явилось причиной смерти 592 человек. Широкую известность получили случаи сильного загрязнения атмосферы Лондона, сопровождавшиеся многочисленными смертельными исходами. В 1873 г. в Лондоне было отмечено 268 непредвиденных смертей. Сильное задымление в сочетании с туманом в период с 5 по 8 декабря 1852 г. привело к гибели более 4000 жителей Большого Лондона. В январе 1956 г. около 1000 лондонцев погибли в результате продолжительного задымления. Большая часть тех, кто умер неожиданно, страдали от бронхита, эмфиземы легких или сердечно-сосудистыми заболеваниями.

2.1. Оксид углерода.

Концентрация СО, превышающая предельно допустимую, приводит к физиологическим изменениям в организме человека, а концентрация более 750 млн к смерти. Объясняется это тем, что СО - исключительно агрессивный газ, легко соединяющийся с гемоглобином (красными кровяными тельцами). При соединении образуется карбоксигемоглобин, повышение (сверх нормы, равной 0.4%) содержание которого в крови сопровождается:

а) ухудшением остроты зрения и способности оценивать длительность интервалов времени,

б) нарушением некоторых психомоторных функций головного мозга (при содержании 2-5%),

в) изменениями деятельности сердца и легких (при содержании более 5%),

г) головными болями, сонливостью, спазмами, нарушениями дыхания и смертностью (при содержании 10-80%).

Степень воздействия оксида углерода на организм зависят не только от его концентрации, но и от времени пребывания (экспозиции) человека в загазованном СО воздухе. Так, при концентрации СО равной 10-50 млн (нередко наблюдаемой в атмосфере площадей и улиц больших городов), при экспозиции 50-60 мин отмечаютcя нарушения, приведенные в п. "а", 8-12 ч - 6 недель - наблюдаются изменения, указанные в п.. "в". Нарушение дыхания, спазмы. Потеря сознания наблюдаются при концентрации СО, равной 200 млн, и экспозиции 1-2 ч при тяжелой работе и 3-6 ч - в покое. К счастью, образование карбоксигемоглобина в крови - процесс обратимый: после прекращения вдыхания СО начинается его постепенный вывод из крови; у здорового человека содержание СО в крови каждые 3-4 ч и уменьшается в два раза. Оксид углерода - очень стабильное вещество, время его жизни в атмосфере составляет 2-4 мес. При ежегодном поступлении 350 млн. т концентрация СО в атмосфере должна была бы увеличиваться примерно на 0,03 млн-1/год. Однако этого, к счастью, не наблюдается, чем мы обязаны в основном почвенным грибам, очень активно разлагающим СО (некоторую роль играет также переход СО в СО2).

2.2. Диоксид серы и серный ангидрид.

Диоксид серы (SO2) и серный ангидрид (SO3) в комбинации со взвешенными частицами и влагой оказывают наиболее вредной воздействие на человека, живые организмы и материальные ценности SO2 - бесцветный и негорючий газ, запах которого начинает ощущаться при его концентрации в воздухе 0,3-1,0 млн, а при концентрации свыше 3 млн SO2 имеет острый раздражающий запах. Диоксид серы в смеси с твердыми частицами и серной кислотой (раздражитель более сильный, чем SO2) уже при среднегодовом содержании 9,04-0,09 млн. и концентрации дыма 150-200 мкг/м3 приводит к увеличению симптомов затрудненного дыхания и болезней легких, а при среднесуточном содержании SO2 0,2-0,5 млн и концентрации дыма 500-750 мкг/м3 наблюдается резкое увеличение числа больных и смертельных исходов. При концентрации SO2 0,3-0,5 млн в течение нескольких дней наступает хроническое поражение листьев растений (особенно шпината, салата, хлопка и люцерны), а также иголок сосны.

2.3. Оксиды азота и некоторые другие вещества.

Оксиды азота (прежде всего, ядовиты диоксид азота NO2), соединяющиеся при участии ультрафиолетовой солнечной радиации с углеводородами (среди наибольшей реакционной способностью обладают олеофины), образуют пероксилацетилнитрат (ПАН) и другие фотохимические окислители, в том числе пероксибензоилнитрат (ПБН), озон (О3), перекись водорода (Н 2О2), диоксид азота. Эти окислители- основные составляющие фотохимического смога, повторяемость которого велика в сильно загрязненных городах, расположенных в низких широтах северного и южного полушария (Лос-Анджелес, в котором около 200 дней в году отмечается смог, Чикаго, Нью-Йорк и другие города США; ряд городов Японии, Турции, Франции, Испании, Италии, Африки и Южной Америки).

Оценка скорости фотохимических реакций, приводящих к образованию ПАН, ПБН и озона, показывает, что в ряде южных городов бывшего Советского Союза летом в околополуденные часы (когда велик приток ультрафиолетовой радиации) эти скорости превосходят значения, начиная с которых отмечается образование смога. Так, в Алма-Ате, Ереване, Тбилиси, Ашхабаде, Баку, Одессе и других городах при наблюдаемых уровнях загрязнения воздуха максимальная скорость образования О3 достигла 0,70-0,86 мг/(м3 Чч), в то время как смог возникает уже при скорости 0,35 мг/(м3 Ч ч).

Наличие в составе ПАН диоксида азота и йодистого калия придает смогу коричневый оттенок. При концентрации ПАН выпадает на землю в виде клейкой жидкости губительно действующей на растительный покров.

Все окислители, в первую очередь ПАН и ПБН, сильно раздражают и взывают воспаление глаз, а в комбинации с озоном раздражают носоглотку, приводят к спазмам грудной клетки, а при высокой концентрации (свыше 3-4 мг/м3) вызывают сильный кашель и ослабляют возможность на чем либо сосредоточиться.

Назовем некоторые другие загрязняющие воздух вещества, вредно действующие на человека. Установлено, что у людей, профессионально имеющих дело с асбестом повышена вероятность раковых заболеваний бронхов и диафрагм, разделяющих грудную клетку и брюшную полость. Берилий оказывает вредное воздействие(вплоть до возникновения онкологических заболеваний) на дыхательные пути, а также на кожу и глаза. Пары ртути вызывают нарушение работы центральной верхней системы и почек. Поскольку ртуть может накапливаться в организме человека, то в конечном итоге ее воздействие приводит к расстройству умственных способностей.

В городах вследствие постоянно увеличивающегося загрязнения воздуха неуклонно растет число больных, страдающих такими заболеваниями, как хронический бронхит, эмфизема легких, различные аллергические заболевания и рак легких. В Великобритании 10% случаев смертельных исходов приходится на хронический бронхит, при этом 21; населения в возрасте 40-59 лет страдает этим заболеванием. В Японии в ряде городов до 60% жителей болеют хроническим бронхитом, симптомами которого является сухой кашель с частыми отхаркиваниями, последующее прогрессирующее затруднение дыхания и сердечная недостаточность (в связи с этим следует отметить, что так называемое японское экономическое чудо 50-х - 60-х годов сопровождалось сильным загрязнением природной среды одного из наиболее красивых районов земного шара и серьезным ущербом, причиненным здоровью населения этой страны). В последние десятилетия с вызывающей сильную озабоченность быстротой растет число заболевших раком бронхов и легких, возникновению которых способствуют канцерогенные углеводороды.

3. Меры по предотвращению загрязнения и охрана атмосферного воздуха.

Оценка автомобилей по токсичности выхлопов. Большое значение имеет повседневный контроль над автомашинами. Все автохозяйства обязаны следить за исправностью выпускаемых на линию машин. При хорошо работающем двигателе в выхлопных газах окиси углерода должно содержаться не более допустимой нормы.

Положением о Государственной автомобильной инспекции на нее возложен контроль за выполнением мероприятий по охране окружающей среды от вредного влияния автомототранспорта.

В принятом стандарте на токсичность предусмотрено дальнейшее ужесточение нормы, хотя они и сегодня в России жестче европейских: по окиси углерода-на 35%, по углеводородам-на 12%, по окислам азота-на 21%.

На заводах введены контроль и регулирование автомобилей по токсичности и дымности отработавших газов.

Системы управления городским транспортом. Разработаны новые системы регулирования уличного движения, которые сводят к минимуму возможность образования пробок, потому что, останавливаясь и потом набирая скорость, автомобиль выбрасывает в несколько раз больше вредных веществ, чем при равномерном движении.

Построены автомагистрали в обход городов, которые приняли весь поток транзитного транспорта, который раньше нескончаемой лентой тянулся по городским улицам. Резко снизилась интенсивность движения, уменьшился шум, чище стал воздух.

В Москве создана автоматизированная система управления дорожным движением «Старт». Благодаря совершенным техническим средствам, математическим методам и вычислительной технике она позволяет оптимально управлять движением транспорта во всем городе и полностью освобождает человека от обязанностей непосредственного регулирования автомобильных потоков. «Старт» на 20-25% сократит задержки транспорта у перекрестков, на 8-10% уменьшит количество дорожно-транспортных происшествий, улучшит санитарное состояние городского воздуха, увеличит скорость сообщения общественного транспорта, снизит уровень шумов.

Перевод автотранспорта на дизельные двигатели. По мнению специалистов, перевод автотранспорта на дизельные двигатели уменьшит выброс в атмосферу вредных веществ. В выхлопе дизеля почти не содержится ядовитой окиси углерода, так как дизельное топливо сжигается в нем практически полностью.

К тому же дизельное топливо свободно от тетраэтила свинца, присадки, которая используется для повышения октанового числа бензина, сжигаемого в современных карбюраторных двигателях с высокой степенью сжигания.

Дизель экономичнее карбюраторного двигателя на 20-30%. Более того, для производства 1 л дизельного топлива требуется в 2,5 раза меньше энергии, чем для производства того же количества бензина. Получается, таким образом, как бы двойная экономия энергоресурсов. Именно этим объясняется быстрый рост числа автомобилей, работающих на дизельном топливе.

Совершенствование двигателей внутреннего сгорания. Создание автомобилей с учетом требований экологии-одна из серьезных задач, которые стоят сегодня перед конструкторами.

Совершенствование процесса сгорания топлива в двигателе внутреннего сгорания, применение электронной системы зажигания приводит к уменьшению в выхлопе вредных веществ.

Нейтрализаторы. Большое внимание придается разработке устройства снижения токсичности-нейтрализаторов, которыми можно оснастить современные автомобили.

Способ каталитического преобразования продуктов сгорания заключается в том, что отработавшие газы очищаются, вступая в контакт с катализатором.

Одновременно происходит дожигание продуктов неполного сгорания, содержащихся в выхлопе автомобилей.

Нейтрализатор крепят к выхлопной трубе, и газы, прошедшие через него, выбрасываются в атмосферу очищенными. Одновременно устройство может выполнять функции глушителя шума. Эффект от использования нейтрализаторов достигается внушительный: при оптимальном режиме выброс в атмосферу оксида углерода уменьшается на 70-80%, а углеводородов-на 50-70%.

Значительно улучшить состав выхлопных газов можно с помощью различных добавок к топливу. Ученые разработали присадку, которая снижает содержание сажи в выхлопных газах на 60-90% и канцерогенных веществ-на 40%.

В последнее время на нефтеперерабатывающих предприятиях страны широко внедряется процесс каталитического риформинга низкооктановых бензинов. В результате можно выпускать неэтилированные, малотоксичные бензины.

Использование их снижает загрязненность атмосферного воздуха, увеличивает срок службы автомобильных двигателей, сокращает расход топлива.

Газ вместо бензина. Высокооктановое, стабильное по составу газовое топливо хорошо смешивается с воздухом и равномерно распределяется по цилиндрам двигателя, способствуя более полному сгоранию рабочей смеси.

Суммарный выброс токсичных веществ у автомобилей, работающих на сжиженном газе, значительно меньше, чем у машин с бензиновыми двигателями. Так, грузовик «ЗИЛ-130», переведенный на газ, имеет показатель по токсичности почти в 4 раза меньше, чем его бензиновый собрат.

При работе двигателя на газе происходит более полное сгорание смеси. А это ведет к снижению токсичности отработавших газов, уменьшению нагарообразования и расхода масла, увеличению моторесурса. Кроме того, сжиженный газ дешевле бензина.

Электромобиль. В настоящее время, когда автомобиль с бензиновым двигателем стал одним из существенных факторов, приводящих к загрязнению окружающей среды, специалисты все чаще обращаются к идее создания «чистого» автомобиля. Речь, как правило, идет об электроавтомобиле.

В настоящее время в нашей стране производятся электромобили пяти марок.

Электромобиль Ульяновского автозавода («УАЗ»-451-МИ) отличается от остальных моделей системой электродвижения на переменном токе и встроенным зарядным устройством. В интересах защиты окружающей среды считается целесообразным перевод автотранспорта на электротягу, особенно в крупных городах.

3.1. Средства защиты атмосферы.

Контроль загрязнения атмосферы на территории России осуществляется почти в 350 городах. Система наблюдения включает 1200 станций и охватывает почти все города с населением более 100 тыс. жителей и города с крупными промышленными предприятиями.

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Во всех случаях должно соблюдаться условие:

С+сф (ПДК (1) по каждому вредному веществу (сф – фоновая концентрация).

Соблюдение этого требования достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

– вывод токсичных веществ из помещений общеобменной вентиляцией;

– локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху;

– локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере;

– очистка технологических газовых выбросов в специальных аппаратах, выброс и рассеивание в атмосфере; в ряде случаев перед выбросом отходящие газы разбавляют атмосферным воздухом;

– очистка отработавших газов энергоустановок, например, двигателей внутреннего сгорания в специальных агрегатах, и выброс в атмосферу или производственную зону (рудники, карьеры, складские помещения и т. п.)

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на: пылеуловители (сухие, электрические, фильтры, мокрые); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители). Их работа характеризуется рядом параметров. Основными из них являются активность очистки, гидравлическое сопротивление и потребляемая мощность.

3.2. Эффективность очистки.

Широкое применение для очистки газов от частиц получили сухие пылеуловители – циклоны различных типов.

Электрическая очистка (электрофильтры) – один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Для этого применяют электрофильтры.

Для высокоэффективной очистки выбросов необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки.

Такие решения находят применение при высокоэффективной очистке газов от твердых примесей; при одновременной очистке от твердых и газообразных примесей; при очистке от твердых примесей и капельной жидкости и т. п.

Многоступенчатую очистку широко применяют в системах очистки воздуха с его последующим возвратом в помещение.

3.3. Способы очистки газовых выбросов в атмосферу.

Абсорбционный способ очистки газов, осуществляемый в установках- абсорберах, наиболее прост и дает высокую степень очистки, однако требует громоздкого оборудования и очистки поглощающей жидкости. Основан на химических реакциях между газом, например, сернистым ангидридом, и поглощающей суспензией (щелочной раствор: известняк, аммиак, известь). При этом способе на поверхность твердого пористого тела (адсорбента) осаждаются газообразные вредные примеси. Последние могут быть извлечены с помощью десорбции при нагревании водяным паром.

Способ окисления горючих углеродистых вредных веществ в воздухе заключается в сжигании в пламени и образовании СО2 и воды, способ термического окисления – в подогреве и подаче в огневую горелку.

Каталитическое окисление с использованием твердых катализаторов заключается в том, что сернистый ангидрид проходит через катализатор в виде марганцевых составов или серной кислоты.

Для очистки газов методом катализа с использованием реакций восстановления и разложения применяют восстановители (водород, аммиак, углеводороды, монооксид углерода). Нейтрализация оксидов азота NOx достигается применением метана с последующим использованием оксида алюминия для нейтрализации на втором этапе образующегося монооксида углерода.

Перспективен сорбционно-каталитический способ очистки особо токсичных веществ при температурах ниже температуры катализа.

Адсорбционно-окислительный способ также представляется перспективным.

Он заключается в физической адсорбции малых количеств вредных компонентов с последующим выдуванием адсорбированного вещества специальным потоком газа в реактор термокаталитического или термического дожигания.

В крупных городах для снижения вредного влияния загрязнения воздуха на человека применяют специальные градостроительные мероприятия: зональную застройку жилых массивов, когда близко к дороге располагают низкие здания, затем – высокие и под их защитой – детские и лечебные учреждения; транспортные развязки без пересечений, озеленение.

3.4. Охрана атмосферного воздуха.

Атмосферный воздух является одним из основных жизненно важных элементов окружающей среды.

Закон «О6 охране атмосферного воздуха» всесторонне охватывает проблему.

Он обобщил требования, выработанные в предшествующие годы и оправдавшие себя на практике. Например, введение правил о запрещении ввода в действие любых производственных объектов (вновь созданных или реконструированных), если они в процессе эксплуатации станут источниками загрязнений или иных отрицательных воздействий на атмосферный воздух. Получили дальнейшее развитие правила о нормировании предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе.

Государственным санитарным законодательством только для атмосферного воздуха были установлены ПДК для большинства химических веществ при изолированном действии и для их комбинаций.

Гигиенические нормативы – это государственное требование к руководителям предприятий. За их выполнением должны следить органы государственного санитарного надзора Министерства здравоохранения и

Государственный комитет по экологии.

Большое значение для санитарной охраны атмосферного воздуха имеет выявление новых источников загрязнения воздушной среды, учет проектируемых, строящихся и реконструируемых объектов, загрязняющих атмосферу, контроль за разработкой и реализацией генеральных планов городов, поселков и промышленных узлов в части размещения промышленных предприятий и санитарно- защитных зон.

В Законе «Об охране атмосферного воздуха» предусматриваются требования об установлении нормативов предельно допустимых выбросов загрязняющих веществ в атмосферу. Такие нормативы устанавливаются для каждого стационарного источника загрязнения, для каждой модели транспортных и других передвижных средств и установок. Они определяются с таким расчетом, чтобы совокупные вредные выбросы от всех источников загрязнения в данной местности не превышали нормативов ПДК загрязняющих веществ в воздухе.

Предельно допустимые выбросы устанавливаются только с учетом предельно допустимых концентраций.

Очень важны требования Закона, относящиеся к применению средств защиты растений, минеральных удобрений и других препаратов. Все законодательные меры составляют систему профилактического характера, направленную на предупреждение загрязнения воздушного бассейна.

Закон предусматривает не только контроль за выполнением его требований, но и ответственность за их нарушение. Специальная статья определяет роль общественных организаций и граждан в осуществлении мероприятий по охране воздушной среды, обязывает их активно содействовать государственным органам в этих вопросах, так как только широкое участие общественности позволит реализовать положения этого закона. Так, в нем сказано, что государство придает большое значение сохранению благоприятного состояния атмосферного воздуха, его восстановлению и улучшению для обеспечения наилучших условий жизни людей – их труда, быта, отдыха и охраны здоровья.

Предприятия или их отдельные здания и сооружения, технологические процессы которых являются источником выделения в атмосферный воздух вредных и неприятно пахнущих веществ, отделяют от жилой застройки санитарно- защитными зонами. Санитарно-защитная зона для предприятий и объектов может быть увеличена при необходимости и надлежащем обосновании не более чем в 3 раза в зависимости от следующих причин: а) эффективности предусмотренных или возможных для осуществления методов очистки выбросов в атмосферу; б) отсутствия способов очистки выбросов; в) размещения жилой застройки при необходимости с подветренной стороны по отношению к предприятию в зоне возможного загрязнения атмосферы; г) розы ветров и других неблагоприятных местных условий (например, частые штили и туманы); д) строительства новых, еще недостаточно изученных вредных в санитарном отношении производств.

Размеры санитарно-защитных зон для отдельных групп или комплексов крупных предприятий химической, нефтеперерабатывающей, металлургической, машиностроительной и других отраслей промышленности, а также тепловых электрических станций с выбросами, создающими большие концентрации различных вредных веществ в атмосферном воздухе и оказывающими особо неблагоприятное влияние на здоровье и санитарно-гигиенические условия жизни населения, устанавливают в каждом конкретном случае по совместному решению

Минздрава и Госстроя России.

Для повышения эффективности санитарно-защитных зон на их территории высаживают древесно-кустарниковую и травянистую растительность, снижающую концентрацию промышленной пыли и газов. В санитарно-защитных зонах предприятий, интенсивно загрязняющих атмосферный воздух вредными для растительности газами, следует выращивать наиболее газоустойчивые деревья, кустарники и травы с учетом степени агрессивности и концентрации промышленных выбросов. Особо вредны для растительности выбросы предприятий химической промышленности (сернистый и серный ангидрид, сероводород, серная, азотная, фтористая и бромистая кислоты, хлор, фтор, аммиак и др.), черной и цветной металлургии, угольной и теплоэнергетической промышленности.

4. Заключение.

Оценка и прогноз химического состояния приземной атмосферы, связанного с природными процессами ее загрязнения, существенно отличается от оценки и прогноза качества этой природной среды, обусловленного антропогенными процессами. Вулканической и флюидной активностью Земли, другими природными феноменами нельзя управлять. Речь может идти только о минимизации последствий негативного воздействия, которое возможно лишь в случае глубокого понимания особенностей функционирования природных систем разного иерархического уровня, и, прежде всего, Земли как планеты. Необходим учет взаимодействия многочисленных факторов, изменчивых во времени и пространстве, К главным факторам относятся не только внутренняя активность

Земли, но и ее связи с Солнцем, космосом. Поэтому мышление «простыми образами» при оценке и прогнозе состояния приземной атмосферы недопустимо и опасно.

Антропогенные процессы загрязнения воздушного бассейна в большинстве случаев поддаются управлению.

Экологическая практика в России и за рубежом показала, что ее неудачи связаны с неполным учетом негативных воздействий, неумением выбрать и оценить главные факторы и последствия, низкой эффективностью использования результатов натурных и теоретических экологических исследований при принятии решений, недостаточной разработанностью методов количественной оценки последствий загрязнения приземной атмосферы и других жизнеобеспечивающих природных сред.

Во всех развитых странах приняты законы об охране атмосферного воздуха.

Они периодически пересматриваются с учетом новых требований к качеству воздуха и поступления новых данных о токсичности и поведении загрязняющих веществ в воздушном бассейне. В США сейчас обсуждается уже четвертый вариант закона о чистом воздухе. Борьба идет между сторонниками охраны окружающей среды и компаниями, экономически не заинтересованными в повышении качества воздуха. Г1равительством Российской Федерации разработан проект закона об охране атмосферного воздуха, который в настоящее время обсуждается. Улучшение качества воздуха на территории России имеет важное социально-экономическое значение.

Это обусловлено многими причинами, и, прежде всего, неблагополучным состоянием воздушного бассейна мегаполисов, крупных городов и промышленных центров, в которых проживает основная часть квалифицированного и трудоспособного населения.

Легко сформулировать формулу качества жизни в столь затяжной экологический кризис: гигиенически чистый воздух, чистая вода, качественная сельскохозяйственная продукция, рекреационная обеспеченность потребностей населения. Сложнее это качество жизни реализовать при наличии экономического кризиса, ограниченных финансовых ресурсов. В такой постановке вопроса необходимы исследования и практические мероприятия, составляющие основу «экологизации» общественного производства.

Экологическая стратегия, прежде всего, предполагает разумную экологически обоснованную технологическую и техническую политику. Эту политику можно сформулировать коротко: производить больше с меньшими затратами, т.е. сберегать ресурсы, использовать их с наибольшим эффектом, совершенствовать и быстро менять технологии, внедрять и расширять рециклинг. Иными словами, должна быть обеспечена стратегия превентивных экологических мер, заключающаяся во внедрении самых совершенных технологий при структурной перестройке хозяйства, обеспечивающих энерго- и ресурсосбережение, открывающая возможности совершенствования и быстрой смены технологий, внедрение рециклинга и минимизацию отходов. Концентрация усилий при этом должна быть направлена на развитие производства потребительских товаров и увеличение доли потребления. В целом хозяйство

России должно максимально сократить энерго- и ресурсоемкость валового национального продукта и потребление энергии и ресурсов в расчете на одного жителя. Сама рыночная система и конкуренция должны способствовать реализации этой стратегии.

Охрана природы - задача нашего века, проблема, ставшая социальной.

Снова и снова мы слышим об опасности, грозящей окружающей среде, но до сих пор многие из нас считают их неприятным, но неизбежным порождением цивилизации и полагают, что мы еще успеем справиться со всеми выявившимися затруднениями. Однако воздействие человека на окружающую среду приняло угрожающие масштабы. Чтобы в корне улучшить положение, понадобятся целенаправленные и продуманные действия. Ответственная и действенная политика по отношению к окружающей среде будет возможна лишь в том случае, если мы накопим надёжные данные о современном состоянии среды, обоснованные знания о взаимодействии важных экологических факторов, если разработает новые методы уменьшения и предотвращения вреда, наносимого Природе

Человеком.

Уже наступает время, когда мир может задохнуться, если не придет на помощь Природе Человек. Только Человек владеет экологическим талантом – содержать окружающий мир в чистоте.

Список использованной литературы:

1. Данилов-Данильян В.И. «Экология, охрана природы и экологическая безопасность» М.: МНЭПУ, 1997 г.

2. Протасов В.Ф. «Экология, здоровье и охрана окружающей среды в России»,

М.: Финансы и статистика, 1999 г.

3. Белов С.В. «Безопасность жизнедеятельности» М.: Высшая школа, 1999 г.

4. Данилов-Данильян В.И. «Экологические проблемы: что происходит, кто виноват и что делать?» М.: МНЭПУ, 1997 г.

5. Козлов А.И., Вершубская Г.Г. «Медицинская антропология коренного населения Севера России» М.: МНЭПУ, 1999 г.

ВВЕДЕНИЕ. 3

1 ЗАДАНИЕ. 4

1.1 Механический цех. 5

1.2 Цеха и участки сварки и резки металлов. 5

1.3 Гальванический цех. 6

1.4 Выбросы от автотранспорта предприятия. 7

1.5 Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/ч. 9

СПИСОК ЛИТЕРАТУРЫ.. 16


ВВЕДЕНИЕ

В настоящее время резко обострилась проблема загрязнения окружающей среды, постепенно она перерастает в реальную угрозу глобальной экологической катастрофы всего человечества. Проблемы экологического бедствия уже охватило более половины земного шара, резкий экологический дискомфорт ощущает население многих городов Казахстана, в том числе Алматы, Усть-Каменогорска, Тараза, Шымкента и других городов. Всё это с особой остротой ставит на повестку дня вопрос об охране окружающей среды и о труде человека в биосфере Земли.

Темпы потребления органических топлив уже сегодня во много раз превышают темпы их естественного синтеза. В свою очередь, окружающая среда в глобальном масштабе начинает воздействовать на энергетику, вынуждая учитывать возможность потребления, того или иного вида топливно-энергетических ресурсов и изыскивать новые виды ресурсов.

Данная расчетно-графическая работа будет рассматривать одно из основных направлений в области охраны окружающей среды – выброс вредных веществ в атмосферу. На примере предприятия в состав, которого входит: механический цех, сварочный цех, гальванический цех, гараж и котельная, будет представлен расчет категории опасности производства по цехам и по предприятию в целом.


ЗАДАНИЕ

На предприятии размещены следующие цеха и производства:

Котельная, гальванический, механический цеха, сварочный участок и гараж.

Исходные данные приведены в таблице 1.

Таблица 1 - Исходные данные(вариант 51)

Цех Наименование станка Количество
Механический Круглошлифовальные
Заточные
Токарные
Время работы
Сва-роч-ный Марка электродов Масса расходуемого материала, кг/год
ИОНИ-13/45
Гальваничес-кий Общ. площадь ванн при процессе обезжиривания, м 2
Орг. Растворителей
Электрохимическое
Время работы
Гараж Пробег, км
Грузовые с бензиновым ДВС
Автобусы с бензиновым ДВС
Автобусы дизельные
Служебные легковые
Котельная Расход натурального топлива
Марка топлива БЗ
Коэффициент очистки воздуха ЗУ
Вид топки Шахтная
К NO2 0.25

СОСТАВ И КОЛИЧЕСТВО ПЛАНИРУЕМЫХ ВЫБРОСОВ В АТМОСФЕРНЫЙ ВОЗДУХ ОПРЕДЕЛЯЕТСЯ РАСЧЕТОМ НА ОСНОВЕ АНАЛИЗА РАБОЧЕГО ПРОЦЕССА.

При механической обработке металлов выделяются пыль, туман и пары масел и смазочно-охлаждающих жидкостей, различные газообразные вещества. Валовое выделение вредных веществ определяется исходя из нормо-часов работы станочного парка. Расчет выбросов при механической обработке производится по формуле (т/год):

M = 3600 . q . t . N . 10 -6 , (1)

где q – удельное выделение пыли (г/с);

t – число часов работы в день, час;

N – число рабочих дней в году.

Выбросы пыли для круглошлифовальных станков в количестве 100 экземпляров диаметром 350 мм:

M = 3600 . 0.170 . 16 . 260 . 10 -6 . 100= 254.592 (т/год).

Выбросы для заточных станков в количестве 20 экземпляров диаметром 200 мм:

M = 3600 . 0.085 . 16 . 260 . 10 -6 . 20 =25.459 (т/год).

И того общее количество выбросов пыли при механической обработке равно:

ΣМ = 280.051 (т/год).

Выбросы аэрозольных веществ для токарных станков средних размеров в количестве 50 экземпляров при охлаждении маслом:

M = 3600 . 2.5 . 16 . 260 . 10 -6 . 50 = 1872 (т/год).

ЦЕХА И УЧАСТКИ СВАРКИ И РЕЗКИ МЕТАЛЛОВ

Расчет выбросов производится по формуле (т/год):

Mi = qi . m . 10 -6 , (2)

где q – удельное выделение вредного вещества (г/кг);

m – масса расходуемого материала.

Для электрода ИОНИ-13/45 выброс сварочной аэрозоли:

Mi = 14.0 . 1000 . 10 -6 = 0.014 (т/год)

Для электрода ИОНИ-13/45 выбросы марганца и его оксидов:

Mi = 0.51 . 1000 . 10 -6 = 0.00051 (т/год)

ГАЛЬВАНИЧЕСКИЙ ЦЕХ

При расчете количества вредных веществ, выделяющихся при гальванической обработке, принят удельный показатель q, отнесенный к площади поверхности гальванической ванны. Количество загрязняющего вещества (т/год), отходящего от единицы технологического оборудования определяется по формуле:

M = 10 -6 . q . T . F . K 3 . K y , (3)

где F – площадь зеркала ванны (м 2);

K y – коэффициент укрытия ванны: при наличие в составе поверхностных активных веществ (ПАВ) K y = 0.5; при отсутствии ПАВ K y = 1;

K 3 – коэффициент загрузки ванны 0.8 – 0.6.

Таблица 2 – Удельное количество вредных веществ, выделяющихся с поверхности гальванических ванн при различных технологических процессах

Рассчитаем количество загрязненного вещества при обезжиривании органическими растворителями:

Для бензина

M = 10 -6 . 4530 . 4300 . 80 . 0.8 . 1 = 1274 (т/г);

Для керосина

M = 10 -6 . 1560 . 4300 . 80 . 0.8 . 1 = 429.312 (т/г);

Для Уайт-спирта

M = 10 -6 . 5800 . 4300 . 80 . 0.8 . 1 = 1596 (т/г);

Для бензола

M = 10 -6 . 2970 . 4300 . 80 . 0.8 . 1 = 817.344 (т/г);

Для трихлорэтилена

M = 10 -6 . 3940 . 4300 . 80 . 0.8 . 1 = 1084 (т/г);

Для тетрахлорэтилена

M = 10 -6 . 4200 . 4300 . 80 . 0.8 . 1 = 1156 (т/г);

Для трифтортрихлорэтана

M = 10 -6 . 14910 . 4300 . 80 . 0.8 . 1 = 4103 (т/г).

Рассчитаем количество загрязненного вещества при электрохимическом обезжиривании едкой щелочью:

M = 10 -6 . 39.6 . 4300 . 80 . 0.8 . 1 = 10.898 (т/г).

ВЫБРОСЫ ОТ АВТОТРАНСПОРТА ПРЕДПРИЯТИЯ

Масса выброшенного за расчетный период i-того вредного вещества при наличие в группе автомобилей с различными двигателями внутреннего сгорания (бензиновые, дизельные, газовые) определяется по формуле (т/г):

Mi = qi . τ . n . R . 10 -6 , (4)

где qi – удельный выброс i-того вредного вещества автомобилем (г/км);

τ – пробег автомобиля за расчетный период (км);

n – коэффициент влияния среднего возраста парка на выбросы автомобиля;

R – коэффициент влияния технического влияния автомобиля.

Таблица 3 - Удельные выбросы вредных веществ для различных групп автомобилей на 1990 год и коэффициенты влияния факторов

Рассчитаем выбросы оксида углерода (СО):

M(СО) = 55.5 . 15000 . 1.33 . 1.69 . 10 -6 = 1.871 (т/год);

M(СО) = 51.5 . 13500 . 1.32 . 1.69 . 10 -6 = 1.563 (т/год);

Для дизельных автобусов

M(СО) = 15 . 10000 . 1.27 . 1.8 . 10 -6 = 0.343 (т/год);

M(СО) = 16.5 . 35000 . 1.28 . 1.63 . 10 -6 = 1.205 (т/год).

ΣM(СО) = 4.982 (т/год).

Рассчитаем выбросы углеводорода:

Для грузовых автомобилей с бензиновым ДВС

M(CH) = 12 . 15000 . 1.33 . 1.69 . 10 -6 = 0.405 (т/год);

Для автобусов с бензиновым ДВС

M(CH) = 9.6 . 13500 . 1.32 . 1.69 . 10 -6 = 0.289 (т/год);

Для дизельных автобусов

M(CH) = 6.4 . 10000 . 1.27 . 1.8 . 10 -6 = 0.146 (т/год);

Для служебных легковых автомобилей

M(CH) = 1.6 . 35000 . 1.28 . 1.63 . 10 -6 = 0.117 (т/год).

И того суммарное количество выбросов углеводорода равно:

ΣM(СН) = 0.957 (т/год).

Рассчитаем выбросы оксидов азота (NOx):

Для грузовых автомобилей с бензиновым ДВС

M(NOx) = 6.8 . 15000 . 1.33 . 1.69 . 10 -6 = 0.229 (т/год);

Для автобусов с бензиновым ДВС

M(NOx) = 6.4 . 13500 . 1.32 . 1.69 . 10 -6 = 0.193 (т/год);

Для дизельных автобусов

M(NOx) = 8.5 . 10000 . 1.27 . 1.8 . 10 -6 = 0.194 (т/год);

Для служебных легковых автомобилей

M(NOx) = 2.23 . 35000 . 1.28 . 1.63 . 10 -6 = 0.163 (т/год).

И того суммарное количество выбросов оксидов азота равно:

ΣM(NOx) = 0.779 (т/год).

1.5 РАСЧЕТ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ ПРИ СЖИГАНИИ ТОПЛИВА В КОТЛАХ ПРОИЗВОДИТЕЛЬНОСТЬЮ ДО 30 т/ч.

Методика предназначена для расчета выбросов вредных веществ с газообразными продуктами сгорания при сжигании твердого топлива, мазута и газа в топках действующих промышленных и коммунальных котлоагрегатов и бытовых теплогенераторов.

Таблица 4 – Значения коэффициентов Х и Ксо в зависимости от типа топки и топлива

Твердые частицы. Расчет выбросов твердых частиц печей золы и недогоревшего топлива (т/год, г/с), выбрасываемых в атмосферу с дымовыми газами котлоагрегата в единицу времени сжигания твердого топлива и мазута, выполняется по формуле:

Птв = B . A r . X . (1-η), (5)

гдеВ – расход натурального топлива (т/год, г/с);

A r – зольность топлива на рабочую массу (%);

η – доля твердых частиц, улавливаемых золоуловителем;

Х = а ун /(100 - Г ун); а ун – доля золы топлива в уносе;

Г ун – содержание горючих в уносе (%).

Птв = 40 . 23.0 . 0.0019 . (1-0) = 1.748 (т/год).

Оксиды серы. Расчет выбросов оксидов серы в пересчете на SO 2 (т/год, т/час, г/с), выбрасываемых в атмосферу с дымовыми газами котлоаграгата в единицу времени, выполняется по формуле:

П SO 2 = 0.002 . B . S r . (1-η SO 2) . (1-η’ SO 2), (6)

где S r – содержание серы в топливе на рабочую массу (%);

η SO 2 – доля оксидов серы, связанных с летучей золой топлива. Для углей – 0,1;

η’ SO 2 – доля оксидов серы, улавливаемых золоуловителем.

П SO 2 = 0.002 . 40 . 0.18 . (1 – 0.1) . (1 - 0) = 0.013 (т/год).

Ориентировочная оценка выбросов оксида углерода (т/год, г/с) может проводится по формуле:

П С O = 0.001 . B . Q i r . K CO . (1-q 4 /100), (7)

где K CO – количество оксида углерода на единицу теплоты, выделяющейся при горении топлива (кг/ГДж).

Для бурых углей:

Для каменных углей:

П С O = 0.001 . 40 . 14.53 . 10 6 . 2 . 10 -9 . (1-2/100) = 0.001139 (т/год).

И того суммарное количество выбросов оксида углерода равно:

ΣM(СО) = 0.002278 (т/год).

Оксиды азота. Количество оксидов азота (в пересчете на NO 2), выделяемых в единицу времени (т/год, г/с), рассчитывается по формуле:

П NO 2 = 0.001 . B . Q i r . K NO 2 . (1 - β), (8)

где Q i r – теплота сгорания натурального топлива (МДж/кг);

K NO 2 – параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла (кг/ГДж);

β – коэффициент, зависящий от степени снижения выбросов оксидов азота в результате применения технических решений.

П NO 2 = 0.001 . 40 . 14.53 . 10 6 . 0.25 . 10 -9 . (1 - 0) = 0.0001453 (т/год).


Похожая информация.


Одним из мощных источников загрязнения городской воздушной среды является автомобильный транспорт, увеличение численности которого привело к насыщению городов легковыми автомобилями и переключению на них большей части пассажирских перевозок. Это резко ухудшает санитарные условия проживания в крупных городах: автомобиль не только загрязняет воздушную среду и создает шум, но, перевозя небольшое число пассажиров и работая на наиболее ценных видах топлива, использует его недостаточно эффективно. В связи с этим возникла необходимость разработки ряда мероприятий, позволяющих предотвратить загрязнение окружающей среды от автотранспорта.

С целью снижения негативного воздействия автотранспорта на атмосферный воздух в рамках представленной классификационной схемы (рис. 3) предусмотрены организационные (архитектурно-планировочные), технологические и специальные инженерно-экологические мероприятия.

Организационные мероприятия включают специальные приемы застройки и озеленение автомагистралей, размещение жилой застройки по принципу зонирования (в первом эшелоне застройки - от магистрали - размешаются здания пониженной этажности, затем - дома повышенной этажности и в глубине застройки - детские и лечебно-оздоровительные учреждения. Тротуары, жилые, торговые и общественные здания изолируются от проезжей части улиц с напряженным движением многорядными древесно-кустарниковыми посадками). Важное значение имеют сооружение транс-портных развязок, кольцевых дорог, использование подземного пространства для размещения гаражей и автостоянок.

Наибольший выброс выхлопных газов имеет место при задержках машин у светофоров, при стоянке с не выключенным двигателем в ожидании зеленого света, при трогании с места и форсировании работы мотора. Поэтому в целях снижения выбросов необходимо устранить препятствия на пути свободного движения потока автомашин. В частности, сооружают специальные автомагистрали, не пересекающиеся на одном уровне с движением машин или пешеходов, специальные переходы для пешеходов на всех пунктах скопления машин, а также эстакады или тоннели для разгрузки перекрывающихся потоков транспорта.

Для снижения загазованности воздушной среды необходимо ограничить количество вредных веществ, выделяемых каждым автомобилем, т.е. установить нормы выброса токсичных веществ с выхлопными газами. Соответствие автомобилей указанным стандартам (в частности, по содержанию оксида углерода и углеводородов в выхлопных газах) проверяют инспектора ГИБДД.

В качестве технологических мероприятий, которые могут резко снизить токсичность выхлопных газов, можно выделить следующие:


Регулировка двигателей;

Изменение состава топлива;

Использование энергии торможения;

Перевод автомобилей на сжиженный газ;

Совершенствование двигателей внутреннего сгорания;

Применение альтернативных видов топлива;

Внедрение гибридных двигателей;

Внедрение в эксплуатацию электромобилей, солнечных автомобилей, а также применение электрического транспорта и др.

Изменение состава топлива. Известно, что в целях предотвращения детонации горючего в двигателях автомашин в него добавляют тетраэтилсвинец , который делает выхлопные газы особо токсичными. Поэтому большие усилия были затрачены на замену указанного вещества на менее опасные, а также на получение стойкого к детонации бензина. При введении в топливо т.н. присадок можно существенно уменьшить количество некоторых токсичных веществ: сажи, альдегидов , оксида углерода и других. Так, для карбюраторных, двигателей самым эффективным оказались смеси различных спиртов.

Использование энергии торможения. Заметного сокращения расхода энергии, а значит, количества сжигаемого топлива и уменьшения загрязнения воздушной среды можно достичь, если использовать энергию, затрачиваемую на торможение. Указанная рекуперация была впервые успешно реализована на электрическом транспорте. Ныне были построены и успешно использованы на автобусах маховичный и гидропневматический рекуператоры. При этом экономия топлива составила 27-40%. объем выхлопных газов снизился на 39-49%.

Перевод автомобилей на сжиженный газ приводит к тому, что в выхлопе газобаллонных автомобилей содержится в 3-4 раза меньше оксида углерода, нежели в выхлопе бензиновых двигателей. При загрузке в баллоны 300 л сжиженного газа автобус способен пройти без заправки до 500 км. Если добавить к этому, что газ дешевле бензина, то достоинства газобаллонного автомобиля становятся еще более наглядными.

Совершенствование двигателей внутреннего сгорания. Например, в США разработан карбюратор с раздельным смесеобразованием. Он позволяет кроме обычной смеси получать обогащенную, которая подается в специальную предкамеру со свечой зажигания. Благодаря этому происходит полное сгорание рабочей смеси, что, в свою очередь, позволяет свести до минимума содержание оксида углерода и углеводородов в выхлопных газах. Создан карбюратор, благодаря которому возможно использовать низкооктановые сорта бензина без антидетонационных добавок. В этом устройстве, со-стоящем из теплообменника, смесителя и реактора, бензин не только распыляется, но и расщепляется с помощью катализатора на более простые газы, например метан .

Во многих странах мира разрабатываются новые, более совершенные двигатели, которые можно устанавливать на серийных автомобилях. В частности, указывают на перспективность роторно-поршневого двигателя Ванкеля, который компактнее поршневых двигателей: объем в среднем на 30%, а масса на 11 % меньше.

Альтернативное топливо. Весьма перспективным заменителем традиционного топлива для автомобилей является водород. Двигатель, работающий на жидком водороде , не дает никаких запахов, не выделяет таких токсичных веществ, как свинец, оксиды азота, углерода. Жидкий водород почти в десять раз легче бензина. На одном из международных автомобильных конкурсов первое место занял «Фольксваген», для которого топливом служил водород. Интересно, что его отработанные газы были чище городского воздуха, который засасывался в карбюратор.

Признаётся перспективным автомобиль с размещенным на его шасси химическим реактором, в котором вырабатывается водород из углеводородов. Расчеты показали, что иметь такой реактор на машине экономичнее, нежели возить это топливо в специальных баллонах.

Преградами на пути широкого внедрения водорода в качестве топлива для автомобильных двигателей является сложность получения его в достаточно больших количествах и необходимость обеспечения высокого уровня безопасности при осуществлении процесса горения водорода.

К другим видам альтернативного топлива можно отнести этиловый и метиловый спирты и их смеси. В США создан двигатель, в котором вместо бензина используется жидкий азот. Бак с охлажденным до жидкого состояния азотом соединен с испарителем, окруженным «рубашкой», в которой циркулирует воздух. Жидкий азот , попадая в испаритель, превращается вследствие быстрого повышения температуры в газ, который выходит под большим давлением из испарителя и приводит в действие электрогенератор. Вырабатываемый последним ток после выпрямления подается для питания электродвигателей, установленных на колесах. Выхлопные газы такого автомобиля состоят из чистого азота, который, естественно, не загрязняет атмосферу.

Перспективно широкое внедрение так называемых гибридных двигателей: в городе при относительно небольших скоростях должен использоваться только электромотор, питающийся от небольших батарей и обеспечивающий запас хода на 40-50 км, а при выезде за город должен включаться обычный двигатель. Одновременно электромотор может быть использован как генератор для подзарядки аккумулятора.

Электромобили. Весьма перспективным является проект массового перехода от автомобилей с бензиновыми и дизельными двигателями на электромобили, которые действуют от батарей - аккумуляторов, подзаряжаемых на станциях.

Электромобили бездымны, бесшумны, их выделения нетоксичны, они просты в управлений, а эксплуатация значительно экономичнее, особенно в городах. Этому способствует относительно небольшой среднесуточный пробег автомобилей в городе, ограничение скорости и возможность организации сети зарядных станций для батарей - аккумуляторов. Сейчас в мире эксплуатируется сотни тысяч электромобилей различного назначения, и парк их непрерывно растет.

Дальнейшие успехи в разработке электромобилей в основном, будут зависеть от решения ряда технических проблем (создания компактных, недорогих и легких аккумуляторов, разработка быстродействующих зарядных устройств). Укажем также на необходимость резкого уве-личения резервных мощностей электростанций, поскольку они недостаточны, если потребуется в перспективе ежедневная подза-рядка многих миллионов электромобилей.

Солнечный автомобиль использует солнечную (или световую) энергию, которая улавливается при помощи специальных солнечных батарей . Электромобиль на спиральных гидридно-никелевых батареях прошел несколько лет назад без подзарядки 601 км.

Как же побыстрее и подешевле создать массовый экологически чистый автомобиль? Прежде всего, считают специалисты, необходимо усовершенствовать существующие конструкции: постараться уменьшить расход топлива, само топливо сделать, более приемлемым с точки зрения чистоты выхлопов, добиться снижения сопротивления воздуха, так как оно при больших скоростях современных автомобилей отбирает большую долю энергии. Можно ис-пользовать новые, например, керамические материалы для двигателей, чтобы повысить их КПД (из-за достижения более высоких температур), что приведет к снижению потребления топлива и, соответственно, к уменьшению загрязнения атмосферного воздуха. Начиная с 1998 г. компании «Дженерал моторе», «Форд» и «Крайслер» начали реализовывать программу выпуска экологичных автомобилей.

Улучшению качества атмосферного воздуха в сочетании со снижением шума способствует применение электрического транспорта (трамвая, троллейбуса).

Специальными инженерно-техническими мероприятиями, снижающими выбросы токсичных веществ от автотранспорта как основного передвижного источника, дающего наибольший вклад в загрязнение атмосферы, является применение нейтрализаторов, катализаторов.

Нейтрализаторы выхлопных газов. К настоящему времени выпускаются нейтрализаторы следующих видов: каталитические (используются твердые катализаторы), пламенные (дожигание примесей в открытом пламени), термические (метод беспламенного окисления) и жидкостные (с помощью химического связывания примесей жидкими реагентами). При этом широкое распространение получили каталитические нейтрализаторы, которые превращают токсичный оксид углерода в малоопасный диоксид.